Skip to main content
Top
Published in: BMC Neurology 1/2019

Open Access 01-12-2019 | Myalgie | Case report

Palbociclib in combination with simvastatin induce severe rhabdomyolysis: a case report

Authors: Vardan Nersesjan, Klaus Hansen, Thomas Krag, Morten Duno, Tina D. Jeppesen

Published in: BMC Neurology | Issue 1/2019

Login to get access

Abstract

Background

Palbociclib is a selective well-tolerated antineoplastic drug used in the treatment of advanced HER2-negative, estrogen-receptor positive breast cancer that has shown significant improvement in progression-free survival. We present a patient that developed severe rhabdomyolysis with tetra-affection and loss of gait after initiating the first cycle of Palbociclib concomitantly with Simvastatin 40 mg treatment.

Case presentation

A 71-year-old woman with metastatic breast cancer developed tetraparesis and near fatal rhabdomyolysis after initiation of first cycle Palbociclib. For 10 years prior to this treatment, the patient had been treated with Simvastatin without myalgia or other neuromuscular complaints prior to the first cycle of Palbociclib. The patient was admitted at the neurology department, where Palbociclib and Simvastatin were discontinued. The patient was aggressively hydrated and treated with intravenous immunoglobulin therapy with slowly remission and finally regaining independent gait function. Evaluation showed a negative myositis antibody work-up. Muscle magnetic resonance imaging showed edema in multiple foci, but skeletal muscle biopsy did not show necrosis. Post discharge genetic analysis showed single heterozygosity for nucleotide polymorphism rs4149056.

Conclusion

We present a patient who developed severe rhabdomyolysis induced by a combination of Palbociclib and Simvastatin treatment. Rhabdomyolysis was most likely induced by toxic plasma concentrations of Simvastatin due to Palbociclibs inhibition of the CYP3A4 enzyme in combination with a decreased hepatic uptake of Simvastatin due to single nucleotide polymorphism rs4149056. The study underscores that combining Simvastatin and Palbociclib should be done cautiously and genetic testing of the rs4149056 SNP is warranted. If present, Simvastatin should be discontinued or replaced with a lesser myopathic statin in regard to patients risk of cardiovascular events.
Literature
1.
go back to reference Law ME, Corsino PE, Narayan S, Law BK. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics. Mol Pharmacol. 2015 [cited 2019 Feb 5];88(5):846–52.CrossRef Law ME, Corsino PE, Narayan S, Law BK. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics. Mol Pharmacol. 2015 [cited 2019 Feb 5];88(5):846–52.CrossRef
2.
go back to reference Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016 [cited 2019 Feb 5];17(4):425–39.CrossRef Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016 [cited 2019 Feb 5];17(4):425–39.CrossRef
3.
go back to reference Updated Data from Phase 3 Trial of IBRANCE® (palbociclib) Plus Letrozole in ER+, HER2- Metastatic Breast Cancer Confirm Improvement in Progression-Free Survival | Pfizer: One of the world’s premier biopharmaceutical companies. [cited 2019 Feb 5]. Updated Data from Phase 3 Trial of IBRANCE® (palbociclib) Plus Letrozole in ER+, HER2- Metastatic Breast Cancer Confirm Improvement in Progression-Free Survival | Pfizer: One of the world’s premier biopharmaceutical companies. [cited 2019 Feb 5].
4.
go back to reference Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol. 2018 [cited 2019 Feb 5];13(1):21–38.CrossRef Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol. 2018 [cited 2019 Feb 5];13(1):21–38.CrossRef
5.
go back to reference Thill M, Schmidt M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther Adv Med Oncol. 2018 [cited 2019 Feb 5];10:175883591879332.CrossRef Thill M, Schmidt M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther Adv Med Oncol. 2018 [cited 2019 Feb 5];10:175883591879332.CrossRef
6.
go back to reference Nelson KL, Stenehjem D, Driscoll M, Gilcrease GW. Fatal Statin-Induced Rhabdomyolysis by Possible Interaction with Palbociclib. Front Oncol. 2017 [cited 2019 Feb 5];7:150.CrossRef Nelson KL, Stenehjem D, Driscoll M, Gilcrease GW. Fatal Statin-Induced Rhabdomyolysis by Possible Interaction with Palbociclib. Front Oncol. 2017 [cited 2019 Feb 5];7:150.CrossRef
7.
go back to reference Pastori D, Polimeni L, Baratta F, Pani A, Del Ben M, Angelico F. The efficacy and safety of statins for the treatment of non-alcoholic fatty liver disease. Dig Liver Dis. 2015 [cited 2019 Feb 8];47(1):4–11.CrossRef Pastori D, Polimeni L, Baratta F, Pani A, Del Ben M, Angelico F. The efficacy and safety of statins for the treatment of non-alcoholic fatty liver disease. Dig Liver Dis. 2015 [cited 2019 Feb 8];47(1):4–11.CrossRef
8.
go back to reference Moßhammer D, Schaeffeler E, Schwab M, Mörike K. Mechanisms and assessment of statin-related muscular adverse effects. Br J Clin Pharmacol. 2014 [cited 2019 Feb 8];78(3):454–66.CrossRef Moßhammer D, Schaeffeler E, Schwab M, Mörike K. Mechanisms and assessment of statin-related muscular adverse effects. Br J Clin Pharmacol. 2014 [cited 2019 Feb 8];78(3):454–66.CrossRef
9.
go back to reference Holbrook A, Wright M, Sung M, Ribic C, Baker S. Statin-Associated Rhabdomyolysis: Is There a Dose-Response Relationship? Can J Cardiol. 2011 [cited 2019 Feb 8];27(2):146–51.CrossRef Holbrook A, Wright M, Sung M, Ribic C, Baker S. Statin-Associated Rhabdomyolysis: Is There a Dose-Response Relationship? Can J Cardiol. 2011 [cited 2019 Feb 8];27(2):146–51.CrossRef
10.
go back to reference Mantas D, Kostakis JD, Markopoulos C. Aromatase inhibitors: a comprehensive review in mechanisms of action, side effects and treatment in postmenopausal early breast cancer patients. Hell J Surg. 2016;88:245. Mantas D, Kostakis JD, Markopoulos C. Aromatase inhibitors: a comprehensive review in mechanisms of action, side effects and treatment in postmenopausal early breast cancer patients. Hell J Surg. 2016;88:245.
11.
go back to reference Law M, Rudnicka AR. Statin Safety: A Systematic Review. Am J Cardiol. 2006 [cited 2019 Feb 5];97(8):S52–60.CrossRef Law M, Rudnicka AR. Statin Safety: A Systematic Review. Am J Cardiol. 2006 [cited 2019 Feb 5];97(8):S52–60.CrossRef
12.
go back to reference U.S. National Library of Medicine. IBRANCE- palbociclib capsule. Kirkland: Quebec: Pfizer Canada Inc; 2016. [cited 2019 Feb 9] U.S. National Library of Medicine. IBRANCE- palbociclib capsule. Kirkland: Quebec: Pfizer Canada Inc; 2016. [cited 2019 Feb 9]
14.
go back to reference Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K, McKnight B, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011. May;21(5):280–8. Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K, McKnight B, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011. May;21(5):280–8.
15.
go back to reference Robertson JFR, Harrison M. Fulvestrant: Pharmacokinetics and pharmacology. Br J Cancer. 2004;90(Suppl 1):S7–10. Robertson JFR, Harrison M. Fulvestrant: Pharmacokinetics and pharmacology. Br J Cancer. 2004;90(Suppl 1):S7–10.
16.
go back to reference Bellet M, Ahmad F, Villanueva R, Valdivia C, Palomino-Doza J, Ruiz A, et al. Palbociclib and ribociclib in breast cancer: consensus workshop on the management of concomitant medication. Therapeutic Advances in Medical Oncology. 2019;11:1758835919833867. Bellet M, Ahmad F, Villanueva R, Valdivia C, Palomino-Doza J, Ruiz A, et al. Palbociclib and ribociclib in breast cancer: consensus workshop on the management of concomitant medication. Therapeutic Advances in Medical Oncology. 2019;11:1758835919833867.
17.
go back to reference Gopalan PK, Pinder MC, Chiappori A, Ivey AM, Gordillo Villegas A, Kaye FJ. A phase II clinical trial of the CDK 4/6 inhibitor palbociclib (PD 0332991) in previously treated, advanced non-small cell lung cancer (NSCLC) patients with inactivated CDKN2A. J Clin Oncol. 2014 [cited 2019 Feb 5];32(15_suppl):8077.CrossRef Gopalan PK, Pinder MC, Chiappori A, Ivey AM, Gordillo Villegas A, Kaye FJ. A phase II clinical trial of the CDK 4/6 inhibitor palbociclib (PD 0332991) in previously treated, advanced non-small cell lung cancer (NSCLC) patients with inactivated CDKN2A. J Clin Oncol. 2014 [cited 2019 Feb 5];32(15_suppl):8077.CrossRef
Metadata
Title
Palbociclib in combination with simvastatin induce severe rhabdomyolysis: a case report
Authors
Vardan Nersesjan
Klaus Hansen
Thomas Krag
Morten Duno
Tina D. Jeppesen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2019
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-019-1490-4

Other articles of this Issue 1/2019

BMC Neurology 1/2019 Go to the issue