Skip to main content
Top
Published in: BMC Neurology 1/2019

Open Access 01-12-2019 | Migraine | Research article

Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: an fMRI study

Authors: Andrea Edit Edes, Shane McKie, Edina Szabo, Gyongyi Kokonyei, Dorottya Pap, Terezia Zsombok, Mate Magyar, Eva Csepany, Gabor Hullam, Adam Gyorgy Szabo, Lajos Rudolf Kozak, Gyorgy Bagdy, Gabriella Juhasz

Published in: BMC Neurology | Issue 1/2019

Login to get access

Abstract

Background

The anterior cingulate cortex (ACC) is a key structure of the pain processing network. Several structural and functional alterations of this brain area have been found in migraine. In addition, altered serotonergic neurotransmission has been repeatedly implicated in the pathophysiology of migraine, although the exact mechanism is not known. Thus, our aim was to investigate the relationship between acute increase of brain serotonin (5-HT) level and the activation changes of the ACC using pharmacological challenge MRI (phMRI) in migraine patients and healthy controls.

Methods

Twenty-seven pain-free healthy controls and six migraine without aura patients participated in the study. All participant attended to two phMRI sessions during which intravenous citalopram, a selective serotonin reuptake inhibitor (SSRI), or placebo (normal saline) was administered. We used region of interest analysis of ACC to compere the citalopram evoked activation changes of this area between patients and healthy participants.

Results

Significant difference in ACC activation was found between control and patient groups in the right pregenual ACC (pgACC) during and after citalopram infusion compared to placebo. The extracted time-series showed that pgACC activation increased in migraine patients compared to controls, especially in the first 8–10 min of citalopram infusion.

Conclusions

Our results demonstrate that a small increase in 5-HT levels can lead to increased phMRI signal in the pregenual part of the ACC that is involved in processing emotional aspects of pain. This increased sensitivity of the pgACC to increased 5-HT in migraine may contribute to recurring headache attacks and increased stress-sensitivity in migraine.
Literature
1.
go back to reference May A. New insights into headache: an update on functional and structural imaging findings. Nat Rev Neurol. 2009;5:199–209.CrossRef May A. New insights into headache: an update on functional and structural imaging findings. Nat Rev Neurol. 2009;5:199–209.CrossRef
2.
go back to reference Tracey I, Mantyh PW. The cerebral signature and its modulation for pain perception. Neuron. 2007;55:377–91.CrossRef Tracey I, Mantyh PW. The cerebral signature and its modulation for pain perception. Neuron. 2007;55:377–91.CrossRef
3.
go back to reference Baliki MN, Chialvo DR, Geha PY, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73.CrossRef Baliki MN, Chialvo DR, Geha PY, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73.CrossRef
4.
go back to reference May A. Pearls and pitfalls: neuroimaging in headache. Cephalalgia. 2013;33:554–65.CrossRef May A. Pearls and pitfalls: neuroimaging in headache. Cephalalgia. 2013;33:554–65.CrossRef
5.
go back to reference Jia Z, Yu S. Grey matter alterations in migraine: a systematic review and meta-analysis. NeuroImage Clin. 2017;14:130–40.CrossRef Jia Z, Yu S. Grey matter alterations in migraine: a systematic review and meta-analysis. NeuroImage Clin. 2017;14:130–40.CrossRef
6.
go back to reference Hougaard A, Amin FM, Arngrim N, et al. Sensory migraine aura is not associated with structural grey matter abnormalities. Neuroimage Clin. 2016;11:322–7.CrossRef Hougaard A, Amin FM, Arngrim N, et al. Sensory migraine aura is not associated with structural grey matter abnormalities. Neuroimage Clin. 2016;11:322–7.CrossRef
7.
go back to reference Russo A, Tessitore A, Esposito F, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol. 2012;259:1903–12.CrossRef Russo A, Tessitore A, Esposito F, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol. 2012;259:1903–12.CrossRef
8.
go back to reference Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci. 2011;31:1937–43.CrossRef Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci. 2011;31:1937–43.CrossRef
9.
go back to reference Bliss TV, Collingridge GL, Kaang BK, Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci. 2016;17:485–96.CrossRef Bliss TV, Collingridge GL, Kaang BK, Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci. 2016;17:485–96.CrossRef
11.
go back to reference Tian Z, Yamanaka M, Bernabucci M, Zhao MG, Zhuo M. Characterization of serotonin-induced inhibition of excitatory synaptic transmission in the anterior cingulate cortex. Mol Brain. 2017;10:21.CrossRef Tian Z, Yamanaka M, Bernabucci M, Zhao MG, Zhuo M. Characterization of serotonin-induced inhibition of excitatory synaptic transmission in the anterior cingulate cortex. Mol Brain. 2017;10:21.CrossRef
12.
go back to reference Simmons AN, Arce E, Lovero KL, Stein MB, Paulus MP. Subchronic SSRI administration attenuates insula response during affective anticipation. Int J Neuropsychopharmacol. 2009;12:1009–20.CrossRef Simmons AN, Arce E, Lovero KL, Stein MB, Paulus MP. Subchronic SSRI administration attenuates insula response during affective anticipation. Int J Neuropsychopharmacol. 2009;12:1009–20.CrossRef
13.
go back to reference Nemoto H, Toda H, Nakajima T, et al. Fluvoxamine modulates pain sensation and affective processing of pain in human brain. Neuroreport. 2003;14:791–7.CrossRef Nemoto H, Toda H, Nakajima T, et al. Fluvoxamine modulates pain sensation and affective processing of pain in human brain. Neuroreport. 2003;14:791–7.CrossRef
14.
go back to reference Sicuteri F, Testi A, Anselmi B. Biochemical investigations in headache: increase in the hydroxyindoleacetic acid excretion during migraine attacks. Int Arch Allergy Immunol. 1961;19:55–8.CrossRef Sicuteri F, Testi A, Anselmi B. Biochemical investigations in headache: increase in the hydroxyindoleacetic acid excretion during migraine attacks. Int Arch Allergy Immunol. 1961;19:55–8.CrossRef
15.
go back to reference Curran DA, Hinterberger H, Lance JW. Total plasma serotonin, 5-hydroxyindoleacetic acid and p-hydroxy-m-methoxymandelic acid excretion in normal and migrainous subjects. Brain. 1965;88:997–1010.CrossRef Curran DA, Hinterberger H, Lance JW. Total plasma serotonin, 5-hydroxyindoleacetic acid and p-hydroxy-m-methoxymandelic acid excretion in normal and migrainous subjects. Brain. 1965;88:997–1010.CrossRef
16.
go back to reference Kangasniemi P, Sonninen V, Rinne UK. Excretion of free and conjugated 5-HIAA and VMA in urine and concentration of 5-HIAA and HVA in CSF during migraine attacks and free intervals. Headache. 2005;12:62–5.CrossRef Kangasniemi P, Sonninen V, Rinne UK. Excretion of free and conjugated 5-HIAA and VMA in urine and concentration of 5-HIAA and HVA in CSF during migraine attacks and free intervals. Headache. 2005;12:62–5.CrossRef
17.
go back to reference Ferrari MD, Odink J, Tapparelli C, Van Kempen GM, Pennings EJ, Bruyn GW. Serotonin metabolism in migraine. Neurology. 1989;39:1239–42.CrossRef Ferrari MD, Odink J, Tapparelli C, Van Kempen GM, Pennings EJ, Bruyn GW. Serotonin metabolism in migraine. Neurology. 1989;39:1239–42.CrossRef
18.
go back to reference Juhasz G, Zsombok T, Laszik A, et al. Despite the general correlation of the serotonin transporter gene regulatory region polymorphism (5-HTTLPR) and platelet serotonin concentration, lower platelet serotonin concentration in migraine patients is independent of the 5-HTTLPR variants. Neurosci Lett. 2003;350:56–60.CrossRef Juhasz G, Zsombok T, Laszik A, et al. Despite the general correlation of the serotonin transporter gene regulatory region polymorphism (5-HTTLPR) and platelet serotonin concentration, lower platelet serotonin concentration in migraine patients is independent of the 5-HTTLPR variants. Neurosci Lett. 2003;350:56–60.CrossRef
19.
go back to reference Juhasz G, Zsombok T, Modos EA, et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain. 2003;106:461–70.CrossRef Juhasz G, Zsombok T, Modos EA, et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain. 2003;106:461–70.CrossRef
20.
go back to reference Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi J, Bagdy G. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia. 2005;25:179–83.CrossRef Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi J, Bagdy G. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia. 2005;25:179–83.CrossRef
21.
go back to reference Juhasz G, Zsombok T, Gonda X, Bagdy G. Nitroglycerin-induced headaches. Orv Hetil. 2004;145:2323–8.PubMed Juhasz G, Zsombok T, Gonda X, Bagdy G. Nitroglycerin-induced headaches. Orv Hetil. 2004;145:2323–8.PubMed
22.
go back to reference Deen M, Hansen HD, Hougaard A, et al. High brain serotonin levels in migraine between attacks: a 5-HT4 receptor binding PET study. Neuroimage Clin. 2018;18:97–102.CrossRef Deen M, Hansen HD, Hougaard A, et al. High brain serotonin levels in migraine between attacks: a 5-HT4 receptor binding PET study. Neuroimage Clin. 2018;18:97–102.CrossRef
23.
go back to reference Deen M, Hougaard A, Hansen HD, et al. Migraine is associated with high brain 5-HT levels as indexed by 5-HT4 receptor binding. Cephalalgia. 2019;39:526–32.CrossRef Deen M, Hougaard A, Hansen HD, et al. Migraine is associated with high brain 5-HT levels as indexed by 5-HT4 receptor binding. Cephalalgia. 2019;39:526–32.CrossRef
24.
go back to reference Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain. 2008;9:267–76.CrossRef Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain. 2008;9:267–76.CrossRef
25.
go back to reference Anderson IM, McKie S, Elliott R, Williams SR, Deakin JF. Assessing human 5-HT function in vivo with pharmacoMRI. Neuropharmacology. 2008;55:1029–37.CrossRef Anderson IM, McKie S, Elliott R, Williams SR, Deakin JF. Assessing human 5-HT function in vivo with pharmacoMRI. Neuropharmacology. 2008;55:1029–37.CrossRef
26.
go back to reference Baumann P. Pharmacology and pharmacokinetics of citalopram and other SSRIs. Int Clin Psychopharmacol. 1996;11(Suppl 1):5–11.CrossRef Baumann P. Pharmacology and pharmacokinetics of citalopram and other SSRIs. Int Clin Psychopharmacol. 1996;11(Suppl 1):5–11.CrossRef
27.
go back to reference Nutt DJ, Forshall S, Bell C, et al. Mechanisms of action of selective serotonin reuptake inhibitors in the treatment of psychiatric disorders. Eur Neuropsychopharmacol. 1999;9(Suppl 3):S81–6.CrossRef Nutt DJ, Forshall S, Bell C, et al. Mechanisms of action of selective serotonin reuptake inhibitors in the treatment of psychiatric disorders. Eur Neuropsychopharmacol. 1999;9(Suppl 3):S81–6.CrossRef
28.
go back to reference Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33. Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33.
29.
go back to reference Headache Classification Committee Of The International Headache Society IHS. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808. Headache Classification Committee Of The International Headache Society IHS. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808.
30.
go back to reference Aderjan D, Stankewitz A, May A. Neuronal mechanisms during repetitive trigemino-nociceptive stimulation in migraine patients. Pain. 2010;151:97–103.CrossRef Aderjan D, Stankewitz A, May A. Neuronal mechanisms during repetitive trigemino-nociceptive stimulation in migraine patients. Pain. 2010;151:97–103.CrossRef
31.
go back to reference Russo A, Tessitore A, Esposito F, et al. Functional changes of the Perigenual part of the anterior cingulate cortex after external trigeminal neurostimulation in migraine patients. Front Neurol. 2017;8:282. Russo A, Tessitore A, Esposito F, et al. Functional changes of the Perigenual part of the anterior cingulate cortex after external trigeminal neurostimulation in migraine patients. Front Neurol. 2017;8:282.
32.
go back to reference Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013;154(Suppl 1):S29–43.CrossRef Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013;154(Suppl 1):S29–43.CrossRef
33.
go back to reference Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp. 2013;34:109–49.CrossRef Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp. 2013;34:109–49.CrossRef
34.
go back to reference Lane RD, Fink GR, Chau PM, Dolan RJ. Neural activation during selective attention to subjective emotional responses. Neuroreport. 1997;8:3969–72.CrossRef Lane RD, Fink GR, Chau PM, Dolan RJ. Neural activation during selective attention to subjective emotional responses. Neuroreport. 1997;8:3969–72.CrossRef
35.
go back to reference Grabenhorst F, Rolls ET, Parris BA. From affective value to decision-making in the prefrontal cortex. Eur J Neurosci. 2008;28:1930–9.CrossRef Grabenhorst F, Rolls ET, Parris BA. From affective value to decision-making in the prefrontal cortex. Eur J Neurosci. 2008;28:1930–9.CrossRef
36.
go back to reference Yu C, Zhou Y, Liu Y, et al. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuroImage. 2011;54:2571–81.CrossRef Yu C, Zhou Y, Liu Y, et al. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuroImage. 2011;54:2571–81.CrossRef
37.
go back to reference Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 2017;12(1):1–23. Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 2017;12(1):1–23.
38.
go back to reference Vogt BA. Submodalities of emotion in the context of cingulate subregions. Cortex. 2014;59:197–202. Vogt BA. Submodalities of emotion in the context of cingulate subregions. Cortex. 2014;59:197–202.
39.
go back to reference Vogt BA, Watanabe H, Grootoonk S, Jones Anthony KP. Topography of diprenorphine binding in human cingulate gyrus and adjacent cortex derived from coregistered PET and MR images. Hum Brain Mapp. 1995;3:1–12. Vogt BA, Watanabe H, Grootoonk S, Jones Anthony KP. Topography of diprenorphine binding in human cingulate gyrus and adjacent cortex derived from coregistered PET and MR images. Hum Brain Mapp. 1995;3:1–12.
40.
go back to reference Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain. 2006;120:8–15. Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain. 2006;120:8–15.
41.
go back to reference Kulkarni B, Bentley DE, Elliott R, et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21:3133–42. Kulkarni B, Bentley DE, Elliott R, et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21:3133–42.
42.
go back to reference Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44.
43.
go back to reference Deen M, Christensen CE, Hougaard A, Hansen HD, Knudsen GM, Ashina M. Serotonergic mechanisms in the migraine brain - a systematic review. Cephalalgia. 2017;37:251–64. Deen M, Christensen CE, Hougaard A, Hansen HD, Knudsen GM, Ashina M. Serotonergic mechanisms in the migraine brain - a systematic review. Cephalalgia. 2017;37:251–64.
44.
go back to reference Tajti J, Pardutz A, Vamos E, et al. Migraine is a neuronal disease. J Neural Transm. 2011;118:511–24. Tajti J, Pardutz A, Vamos E, et al. Migraine is a neuronal disease. J Neural Transm. 2011;118:511–24.
Metadata
Title
Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: an fMRI study
Authors
Andrea Edit Edes
Shane McKie
Edina Szabo
Gyongyi Kokonyei
Dorottya Pap
Terezia Zsombok
Mate Magyar
Eva Csepany
Gabor Hullam
Adam Gyorgy Szabo
Lajos Rudolf Kozak
Gyorgy Bagdy
Gabriella Juhasz
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2019
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-019-1478-0

Other articles of this Issue 1/2019

BMC Neurology 1/2019 Go to the issue