Skip to main content
Top
Published in: BMC Neurology 1/2019

Open Access 01-12-2019 | Craniopharyngioma | Research article

Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach

Authors: Xi Chen, Yusheng Tong, Zhifeng Shi, Hong Chen, Zhong Yang, Yuanyuan Wang, Liang Chen, Jinhua Yu

Published in: BMC Neurology | Issue 1/2019

Login to get access

Abstract

Background

Frequent somatic mutations of BRAF and CTNNB1 were identified in both histological subtypes of craniopharyngioma (adamantinomatous and papillary) which shed light on target therapy to cure this oncogenic disease. The aim of this study was to investigate the noninvasive MRI-based radiomics diagnosis to detect BRAF and CTNNB1 mutations in craniopharyngioma patients.

Methods

Forty-four patients pathologically diagnosed as adamantinomatous craniopharyngioma (ACP) or papillary craniopharyngioma (PCP) were retrospectively studied. High-throughput features were extracted from manually segmented tumors in MR images of each case. The modifications-robustness in region of interests and Random Forest-based feature selection methods were adopted to select the most significant features. Random forest classifier with 10-fold cross-validation was applied to build our radiomics model.

Results

Four features were selected to make pathological diagnosis between ACP and PCP with area under the receiver operating characteristic curve (AUC) of 0.89, accurancy (ACC) of 0.86, sensitivity (SENS) of 0.89 and specificity (SPEC) of 0.85. The other two features were applied to estimate BRAF V600E mutation with AUC of 0.91, ACC of 0.93, SENS of 0.83 and SPEC of 0.97. Accurate predication of CTNNB1 mutation by three selected features was realized with AUC of 0.93, ACC of 0.86, SENS of 0.86 and SPEC of 0.86.

Conclusions

We developed a reliable MRI-based radiomics approach to perform pathological and molecular diagnosis in craniopharyngioma patients with considerably accurate prediction, which could offer potential guidance for clinical decision-making.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology. 2017;19:V1–V88.CrossRef Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology. 2017;19:V1–V88.CrossRef
2.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRef Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRef
5.
go back to reference Pascual JM, Prieto R. Harvey Cushing and pituitary case number 3 (Mary D.): the origin of this most baffling problem in neurosurgery. Neurosurg Focus. 2016;41:1. Pascual JM, Prieto R. Harvey Cushing and pituitary case number 3 (Mary D.): the origin of this most baffling problem in neurosurgery. Neurosurg Focus. 2016;41:1.
6.
go back to reference Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46(2):161–U00.CrossRef Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46(2):161–U00.CrossRef
8.
go back to reference Marucci G, de Biase D, Zoli M, Faustini-Fustini M, Bacci A, Pasquini E, et al. Targeted BRAF and CTNNB1 next-generation sequencing allows proper classification of nonadenomatous lesions of the sellar region in samples with limiting amounts of lesional cells. Pituitary. 2015;18(6):905–11.CrossRef Marucci G, de Biase D, Zoli M, Faustini-Fustini M, Bacci A, Pasquini E, et al. Targeted BRAF and CTNNB1 next-generation sequencing allows proper classification of nonadenomatous lesions of the sellar region in samples with limiting amounts of lesional cells. Pituitary. 2015;18(6):905–11.CrossRef
9.
go back to reference Brastianos PK, Santagata SBRAF. V600E mutations in papillary craniopharyngioma. Eur J Endocrinol. 2016;174(4):R139–R44.CrossRef Brastianos PK, Santagata SBRAF. V600E mutations in papillary craniopharyngioma. Eur J Endocrinol. 2016;174(4):R139–R44.CrossRef
10.
go back to reference Holsken A, Kreutzer J, Hofmann BM, Hans V, Oppel F, Buchfelder M, et al. Target gene activation of the Wnt signaling pathway in nuclear beta-catenin accumulating cells of Adamantinomatous Craniopharyngiomas. Brain Pathol. 2009;19(3):357–64.CrossRef Holsken A, Kreutzer J, Hofmann BM, Hans V, Oppel F, Buchfelder M, et al. Target gene activation of the Wnt signaling pathway in nuclear beta-catenin accumulating cells of Adamantinomatous Craniopharyngiomas. Brain Pathol. 2009;19(3):357–64.CrossRef
11.
go back to reference Holsken A, Sill M, Merkle J, Schweizer L, Buchfelder M, Flitsch J, et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathologica Communications. 2016;4. Holsken A, Sill M, Merkle J, Schweizer L, Buchfelder M, Flitsch J, et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathologica Communications. 2016;4.
12.
go back to reference Aylwin SJB, Bodi I, Beaney R. Pronounced response of papillary craniopharyngioma to treatment with vemurafenib, a BRAF inhibitor. Pituitary. 2016;19(5):544–6.CrossRef Aylwin SJB, Bodi I, Beaney R. Pronounced response of papillary craniopharyngioma to treatment with vemurafenib, a BRAF inhibitor. Pituitary. 2016;19(5):544–6.CrossRef
13.
go back to reference Brastianos PK, Shankar GM, Gill CM, Taylor-Weiner A, Nayyar N, Panka DJ, et al. Dramatic response of BRAF V600E mutant papillary Craniopharyngioma to targeted therapy. Jnci-J Natl Cancer Inst. 2016;108:2.CrossRef Brastianos PK, Shankar GM, Gill CM, Taylor-Weiner A, Nayyar N, Panka DJ, et al. Dramatic response of BRAF V600E mutant papillary Craniopharyngioma to targeted therapy. Jnci-J Natl Cancer Inst. 2016;108:2.CrossRef
14.
go back to reference Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discovery. 2016;6(5):479–91.CrossRef Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discovery. 2016;6(5):479–91.CrossRef
15.
go back to reference Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84.CrossRef Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84.CrossRef
16.
go back to reference Li ZJ, Wang YY, Yu JH, Guo Y, Cao W. Deep learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7:5467.CrossRef Li ZJ, Wang YY, Yu JH, Guo Y, Cao W. Deep learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7:5467.CrossRef
17.
go back to reference Yu JH, Shi ZF, Lian YX, Li ZJ, Liu TT, Gao Y, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol. 2017;27(8):3509–22.CrossRef Yu JH, Shi ZF, Lian YX, Li ZJ, Liu TT, Gao Y, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol. 2017;27(8):3509–22.CrossRef
19.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89.CrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89.CrossRef
20.
go back to reference Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philosophical Transactions of the Royal Society B-Biological Sciences. 2001;356(1412):1293–322.CrossRef Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philosophical Transactions of the Royal Society B-Biological Sciences. 2001;356(1412):1293–322.CrossRef
21.
go back to reference Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.CrossRef Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.CrossRef
22.
go back to reference Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22(1):81–91.CrossRef Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22(1):81–91.CrossRef
23.
go back to reference Haralick RM, Shanmugam K. Dinstein I. textural features for image classification. Ieee transactions on systems man and cybernetics. Smc3. 1973;6:610–21. Haralick RM, Shanmugam K. Dinstein I. textural features for image classification. Ieee transactions on systems man and cybernetics. Smc3. 1973;6:610–21.
24.
go back to reference Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.CrossRef Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.CrossRef
25.
go back to reference Peng HC, Long FH, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. Ieee T Pattern Anal. 2005;27(8):1226–38.CrossRef Peng HC, Long FH, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. Ieee T Pattern Anal. 2005;27(8):1226–38.CrossRef
26.
go back to reference Gevaert O, Mitchell LA, Achrol AS, Xu JJ, Echegaray S, Steinberg GK, et al. Glioblastoma Multiforme: exploratory Radiogenomic analysis by using quantitative image features. Radiology. 2014;273(1):168–74.CrossRef Gevaert O, Mitchell LA, Achrol AS, Xu JJ, Echegaray S, Steinberg GK, et al. Glioblastoma Multiforme: exploratory Radiogenomic analysis by using quantitative image features. Radiology. 2014;273(1):168–74.CrossRef
28.
go back to reference Segal MR. Machine learning benchmarks and random Forest regression. In: Center for Bioinformatics & Molecular Biostatistics; 2004. Segal MR. Machine learning benchmarks and random Forest regression. In: Center for Bioinformatics & Molecular Biostatistics; 2004.
29.
go back to reference Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol. 2002;161(6):1997–2001.CrossRef Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol. 2002;161(6):1997–2001.CrossRef
30.
go back to reference Ascierto PA, Minor D, Ribas A, Lebbe C, O'Hagan A, Arya N, et al. Phase II trial (BREAK-2) of the BRAF inhibitor Dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 2013;31(26):3205.CrossRef Ascierto PA, Minor D, Ribas A, Lebbe C, O'Hagan A, Arya N, et al. Phase II trial (BREAK-2) of the BRAF inhibitor Dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 2013;31(26):3205.CrossRef
31.
go back to reference Goya-Outi J, Orlhac F, Calmon R, Alentorn A, Nioche C, Philippe C, et al. Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma. Phys Med Biol. 2018;63(10). Goya-Outi J, Orlhac F, Calmon R, Alentorn A, Nioche C, Philippe C, et al. Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma. Phys Med Biol. 2018;63(10).
Metadata
Title
Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach
Authors
Xi Chen
Yusheng Tong
Zhifeng Shi
Hong Chen
Zhong Yang
Yuanyuan Wang
Liang Chen
Jinhua Yu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2019
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-018-1216-z

Other articles of this Issue 1/2019

BMC Neurology 1/2019 Go to the issue