Skip to main content
Top
Published in: BMC Neurology 1/2017

Open Access 01-12-2017 | Research article

Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches

Authors: Lucía Galán, Ulises Gómez-Pinedo, Antonio Guerrero, Jose Manuel García-Verdugo, Jorge Matías-Guiu

Published in: BMC Neurology | Issue 1/2017

Login to get access

Abstract

Background

Adult neurogenesis persists through life at least in classic neurogenic niches. Neurogenesis has been previously described as reduced in neurodegenerative diseases. There is not much knowledge about is adult neurogenesis is or not modified in amyotrophy lateral sclerosis (ALS). All previous publications has studied the ALS SOD1 (superoxide dismutase) transgenic mouse model. The purpose of this study is to examine the process of adult neurogenesis in classic niches (subventricular zone [SVZ] and subgranular zone [SGZ] of the dentate gyrus) in patients with amyotrophic lateral sclerosis (ALS), both with (ALS-FTD) and without associated frontotemporal dementia (FTD).

Methods

We studied 9 autopsies of patients with ALS (including 2 with ALS-FTD) and 4 controls. ALS was confirmed histologically. Studies of the SVZ and SGZ were conducted using markers of proliferation (Ki-67, PCNA), of pluripotent neural progenitor cells (GFAPδ), neuroblasts (PSA-NCAM, DCX, TUJ1), and an astrocyte marker (GFAP). Results were analyzed with non-parametric tests. We then studied correlations between the different markers and the percentage of phosphorylated TDP-43 (pTDP-43).

Results

We observed a statistically significant increase in proliferation in the SVZ in all patients with ALS. While this increase was more marked in ALS forms associated with dementia, the small sample size does not permit a statistical subgroup analysis. In contrast, proliferation in the SGZ was decreased in all patients. These alterations showed a positive and direct correlation with the percentage of pTDP-43 in the SVZ, and a negative, exponential correlation with that percentage in the SGZ.

Conclusions

We observed alterations of the proliferation of neural progenitor in classic adult neurogenic niches in patients with ALS. The 2 neurogenic niches exhibited opposite changes such that proliferation increased in the SVZ and decreased in the SGZ.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.CrossRefPubMed Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.CrossRefPubMed
3.
go back to reference Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol. 2004;478:359–78.CrossRefPubMed Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol. 2004;478:359–78.CrossRefPubMed
4.
go back to reference Quinones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM. The human brain subventricular zone: stem cells in this niche and its organization. Neurosurg Clin N Am. 2007;18:15–20. viiCrossRefPubMed Quinones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM. The human brain subventricular zone: stem cells in this niche and its organization. Neurosurg Clin N Am. 2007;18:15–20. viiCrossRefPubMed
5.
go back to reference Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic niches and neurogenesis modulation by vitamins. J Stem Cell Res Ther. 2014;4:184.PubMedPubMedCentral Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic niches and neurogenesis modulation by vitamins. J Stem Cell Res Ther. 2014;4:184.PubMedPubMedCentral
7.
go back to reference Kempermann G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci. 2002;22:635–8.PubMed Kempermann G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci. 2002;22:635–8.PubMed
8.
go back to reference Lazarini F, Lledo PM. Is adult neurogenesis essential for olfaction? Trends Neurosci. 2011;34:20–30.CrossRefPubMed Lazarini F, Lledo PM. Is adult neurogenesis essential for olfaction? Trends Neurosci. 2011;34:20–30.CrossRefPubMed
9.
go back to reference Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, et al. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010;74:357–65.CrossRefPubMed Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, et al. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010;74:357–65.CrossRefPubMed
11.
go back to reference Beeldman E, Raaphorst J, Klein Twennaar M, de Visser M, Schmand BA, de Haan RJ. The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry. 2016;87(6):611–9. doi:10.1136/jnnp-2015-310734. Beeldman E, Raaphorst J, Klein Twennaar M, de Visser M, Schmand BA, de Haan RJ. The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry. 2016;87(6):611–9. doi:10.​1136/​jnnp-2015-310734.
12.
go back to reference Matias-Guiu JA, Pytel V, Cabrera-Martin MN, et al. Amyloid- and FDG-PET imaging in amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging. 2016;43:2050–60.CrossRefPubMed Matias-Guiu JA, Pytel V, Cabrera-Martin MN, et al. Amyloid- and FDG-PET imaging in amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging. 2016;43:2050–60.CrossRefPubMed
13.
14.
go back to reference Cykowski MD, Powell SZ, Peterson LE, et al. Clinical significance of TDP-43 neuropathology in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2017;76:402–13.CrossRefPubMed Cykowski MD, Powell SZ, Peterson LE, et al. Clinical significance of TDP-43 neuropathology in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2017;76:402–13.CrossRefPubMed
15.
go back to reference Brettschneider J, Del Tredici K, Irwin DJ, et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 2014;127:423–39.CrossRefPubMedPubMedCentral Brettschneider J, Del Tredici K, Irwin DJ, et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 2014;127:423–39.CrossRefPubMedPubMedCentral
16.
go back to reference Ng AS, Rademakers R, Miller BL. Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann N Y Acad Sci. 2015;1338:71–93.CrossRefPubMed Ng AS, Rademakers R, Miller BL. Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann N Y Acad Sci. 2015;1338:71–93.CrossRefPubMed
17.
go back to reference Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2007;24(1):CD001447. Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2007;24(1):CD001447.
18.
go back to reference Chi L, Gan L, Luo C, Lien L, Liu R. Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev. 2007;16:579–88.CrossRefPubMed Chi L, Gan L, Luo C, Lien L, Liu R. Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev. 2007;16:579–88.CrossRefPubMed
19.
go back to reference Chi L, Ke Y, Luo C, et al. Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells. 2006;24:34–43.CrossRefPubMed Chi L, Ke Y, Luo C, et al. Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells. 2006;24:34–43.CrossRefPubMed
20.
go back to reference Warita H, Murakami T, Manabe Y, et al. Induction of polysialic acid-neural cell adhesion molecule in surviving motoneurons of transgenic amyotrophic lateral sclerosis mice. Neurosci Lett. 2001;300:75–8.CrossRefPubMed Warita H, Murakami T, Manabe Y, et al. Induction of polysialic acid-neural cell adhesion molecule in surviving motoneurons of transgenic amyotrophic lateral sclerosis mice. Neurosci Lett. 2001;300:75–8.CrossRefPubMed
21.
go back to reference Galan L, Gomez-Pinedo U, Vela-Souto A, et al. Subventricular zone in motor neuron disease with frontotemporal dementia. Neurosci Lett. 2011;499:9–13.CrossRefPubMed Galan L, Gomez-Pinedo U, Vela-Souto A, et al. Subventricular zone in motor neuron disease with frontotemporal dementia. Neurosci Lett. 2011;499:9–13.CrossRefPubMed
22.
go back to reference Kee N, Sivalingam S, Boonstra R, Wojtowicz JM. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods. 2002;115:97–105.CrossRefPubMed Kee N, Sivalingam S, Boonstra R, Wojtowicz JM. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods. 2002;115:97–105.CrossRefPubMed
23.
go back to reference Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006;494:415–34.CrossRefPubMed Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006;494:415–34.CrossRefPubMed
24.
go back to reference Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci. 1997;17:5046–61.PubMed Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci. 1997;17:5046–61.PubMed
25.
go back to reference Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 2004;7:1233–41.CrossRefPubMed Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 2004;7:1233–41.CrossRefPubMed
26.
go back to reference Gomez-Pinedo U, Galan L, Yanez M, et al. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. Neurologia. 2016;25(16)30167–0. doi:10.1016/j.nrl.2016.07.002. Gomez-Pinedo U, Galan L, Yanez M, et al. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. Neurologia. 2016;25(16)30167–0. doi:10.​1016/​j.​nrl.​2016.​07.​002.
27.
go back to reference Kamphuis W, Mamber C, Moeton M, et al. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One. 2012;7:e42823.CrossRefPubMedPubMedCentral Kamphuis W, Mamber C, Moeton M, et al. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One. 2012;7:e42823.CrossRefPubMedPubMedCentral
28.
go back to reference Seki T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res. 2002;70:327–34.CrossRefPubMed Seki T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res. 2002;70:327–34.CrossRefPubMed
29.
go back to reference Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42:621–38.CrossRefPubMed Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42:621–38.CrossRefPubMed
30.
go back to reference Francis F, Koulakoff A, Boucher D, et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron. 1999;23:247–56.CrossRefPubMed Francis F, Koulakoff A, Boucher D, et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron. 1999;23:247–56.CrossRefPubMed
31.
go back to reference von Bohlen Und Halbach O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 2007;329:409–20.CrossRef von Bohlen Und Halbach O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 2007;329:409–20.CrossRef
32.
go back to reference Baralle M, Buratti E, Baralle FE. The role of TDP-43 in the pathogenesis of ALS and FTLD. Biochem Soc Trans. 2013;41:1536–40.CrossRefPubMed Baralle M, Buratti E, Baralle FE. The role of TDP-43 in the pathogenesis of ALS and FTLD. Biochem Soc Trans. 2013;41:1536–40.CrossRefPubMed
33.
35.
go back to reference Thompson A, Boekhoorn K, Van Dam AM, Lucassen PJ. Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence? Genes Brain Behav. 2008;7(Suppl 1):28–42.CrossRefPubMed Thompson A, Boekhoorn K, Van Dam AM, Lucassen PJ. Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence? Genes Brain Behav. 2008;7(Suppl 1):28–42.CrossRefPubMed
36.
go back to reference Curtis MA, Penney EB, Pearson AG, et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc Natl Acad Sci U S A. 2003;100:9023–7.CrossRefPubMedPubMedCentral Curtis MA, Penney EB, Pearson AG, et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc Natl Acad Sci U S A. 2003;100:9023–7.CrossRefPubMedPubMedCentral
37.
38.
go back to reference Boekhoorn K, Joels M, Lucassen PJ. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis. 2006;24:1–14.CrossRefPubMed Boekhoorn K, Joels M, Lucassen PJ. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis. 2006;24:1–14.CrossRefPubMed
39.
go back to reference Mirochnic S, Wolf S, Staufenbiel M, Kempermann G. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus. 2009;19:1008–18.CrossRefPubMed Mirochnic S, Wolf S, Staufenbiel M, Kempermann G. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus. 2009;19:1008–18.CrossRefPubMed
40.
go back to reference Bossers K, Wirz KT, Meerhoff GF, et al. Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease. Brain. 2010;133:3699–723.CrossRefPubMed Bossers K, Wirz KT, Meerhoff GF, et al. Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease. Brain. 2010;133:3699–723.CrossRefPubMed
41.
go back to reference Kohl Z, Kandasamy M, Winner B, et al. Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain Res. 2007;1155:24–33.CrossRefPubMed Kohl Z, Kandasamy M, Winner B, et al. Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain Res. 2007;1155:24–33.CrossRefPubMed
42.
go back to reference Simpson JM, Gil-Mohapel J, Pouladi MA, et al. Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis. 2011;41:249–60.CrossRefPubMed Simpson JM, Gil-Mohapel J, Pouladi MA, et al. Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis. 2011;41:249–60.CrossRefPubMed
43.
go back to reference Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL. The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience. 2005;132:777–88.CrossRefPubMed Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL. The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience. 2005;132:777–88.CrossRefPubMed
44.
go back to reference Guan YJ, Wang X, Wang HY, et al. Increased stem cell proliferation in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice. J Neurochem. 2007;102:1125–38.CrossRefPubMed Guan YJ, Wang X, Wang HY, et al. Increased stem cell proliferation in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice. J Neurochem. 2007;102:1125–38.CrossRefPubMed
46.
go back to reference Gil-Perotin S, Alvarez-Buylla A, Garcia-Verdugo JM. Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv Anat Embryol Cell Biol. 2009;203:1–101. ixCrossRefPubMed Gil-Perotin S, Alvarez-Buylla A, Garcia-Verdugo JM. Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv Anat Embryol Cell Biol. 2009;203:1–101. ixCrossRefPubMed
47.
go back to reference Barkho BZ, Zhao X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther. 2011;6:327–38.CrossRefPubMedPubMedCentral Barkho BZ, Zhao X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther. 2011;6:327–38.CrossRefPubMedPubMedCentral
49.
go back to reference Yanez M, Matias-Guiu J, Arranz-Tagarro JA, et al. The neuroprotection exerted by memantine, minocycline and lithium, against neurotoxicity of CSF from patients with amyotrophic lateral sclerosis, is antagonized by riluzole. Neurodegener Dis. 2014;13:171–9.CrossRefPubMed Yanez M, Matias-Guiu J, Arranz-Tagarro JA, et al. The neuroprotection exerted by memantine, minocycline and lithium, against neurotoxicity of CSF from patients with amyotrophic lateral sclerosis, is antagonized by riluzole. Neurodegener Dis. 2014;13:171–9.CrossRefPubMed
50.
go back to reference Yanez M, Galan L, Matias-Guiu J, Vela A, Guerrero A, Garcia AG. CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: protection by resveratrol but not riluzole. Brain Res. 2011;1423:77–86.CrossRefPubMed Yanez M, Galan L, Matias-Guiu J, Vela A, Guerrero A, Garcia AG. CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: protection by resveratrol but not riluzole. Brain Res. 2011;1423:77–86.CrossRefPubMed
51.
go back to reference Batiz LF, Castro MA, Burgos PV, et al. Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci. 2015;9:501.PubMed Batiz LF, Castro MA, Burgos PV, et al. Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci. 2015;9:501.PubMed
52.
go back to reference Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol. 2016;524:646–64.CrossRefPubMed Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol. 2016;524:646–64.CrossRefPubMed
Metadata
Title
Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches
Authors
Lucía Galán
Ulises Gómez-Pinedo
Antonio Guerrero
Jose Manuel García-Verdugo
Jorge Matías-Guiu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2017
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-0956-5

Other articles of this Issue 1/2017

BMC Neurology 1/2017 Go to the issue