Skip to main content
Top
Published in: BMC Neurology 1/2017

Open Access 01-12-2017 | Research article

Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force

Authors: Vanesa Bochkezanian, Robert U. Newton, Gabriel S. Trajano, Amilton Vieira, Timothy S. Pulverenti, Anthony J. Blazevich

Published in: BMC Neurology | Issue 1/2017

Login to get access

Abstract

Background

Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100–200 μs) and low-to-moderate pulse frequencies (30–50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before “muscle fatigue”, and the post-exercise recovery of muscle function.

Methods

Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus.

Results

TTI increased (145.0 ± 127.7%) in STIM only for “positive responders” to the tendon vibration (8/16 subjects), but decreased in “negative responders” (−43.5 ± 25.7%). MVIC (−8.7%) and rectus femoris electromyography (RF EMG) (−16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition.

Conclusions

Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.
Literature
1.
go back to reference Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, et al. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci. 2009;64(11):1183–9.CrossRefPubMed Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, et al. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci. 2009;64(11):1183–9.CrossRefPubMed
3.
go back to reference Solberg PA, Kvamme NH, Raastad T, Ommundsen Y, Tomten SE, Halvari H, et al. Effects of different types of exercise on muscle mass, strength, function and well-being in elderly. Eur J Sport Sci. 2013;13(1):112–25.CrossRef Solberg PA, Kvamme NH, Raastad T, Ommundsen Y, Tomten SE, Halvari H, et al. Effects of different types of exercise on muscle mass, strength, function and well-being in elderly. Eur J Sport Sci. 2013;13(1):112–25.CrossRef
4.
go back to reference Caserotti P, Aagaard P, Larsen JB, Puggaard L. Explosive heavy-resistance training in old and very old adults: changes in rapid muscle force, strength and power. Scand J Med Sci Sports. 2008;18(6):773–82.CrossRefPubMed Caserotti P, Aagaard P, Larsen JB, Puggaard L. Explosive heavy-resistance training in old and very old adults: changes in rapid muscle force, strength and power. Scand J Med Sci Sports. 2008;18(6):773–82.CrossRefPubMed
5.
go back to reference Andrade SD, da Silva JN. The effects of resistance training in osteoporosis: a systematic review. RBNE. 2015;9(50):144–9. Andrade SD, da Silva JN. The effects of resistance training in osteoporosis: a systematic review. RBNE. 2015;9(50):144–9.
6.
go back to reference Clark JE, Goon DT. The role of resistance training for treatment of obesity related health issues and for changing health status of the individual who is overfat or obese: a review. J Sports Med Phys Fitness. 2015;55(3):205–22.PubMed Clark JE, Goon DT. The role of resistance training for treatment of obesity related health issues and for changing health status of the individual who is overfat or obese: a review. J Sports Med Phys Fitness. 2015;55(3):205–22.PubMed
7.
go back to reference Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diab-Metabol Res Rev. 2016;32(1):40–50.CrossRef Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diab-Metabol Res Rev. 2016;32(1):40–50.CrossRef
8.
go back to reference Thrasher TA, Ward JS, Fisher S. Strength and endurance adaptations to functional electrical stimulation leg cycle ergometry in spinal cord injury. NeuroRehabil. 2013;33(1):133–8. Thrasher TA, Ward JS, Fisher S. Strength and endurance adaptations to functional electrical stimulation leg cycle ergometry in spinal cord injury. NeuroRehabil. 2013;33(1):133–8.
9.
go back to reference Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009;19(4):614–22.CrossRefPubMed Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009;19(4):614–22.CrossRefPubMed
10.
go back to reference Harvey LA, Fornusek C, Bowden JL, Pontifex N, Glinsky J, Middleton JW, et al. Electrical stimulation plus progressive resistance training for leg strength in spinal cord injury: A randomized controlled trial. Spinal Cord. 2010;48(7):570–5.CrossRefPubMed Harvey LA, Fornusek C, Bowden JL, Pontifex N, Glinsky J, Middleton JW, et al. Electrical stimulation plus progressive resistance training for leg strength in spinal cord injury: A randomized controlled trial. Spinal Cord. 2010;48(7):570–5.CrossRefPubMed
11.
go back to reference Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther. 2005;85(4):358–64.PubMed Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther. 2005;85(4):358–64.PubMed
12.
go back to reference Hillegass EA, Dudley GA. Surface electrical stimulation of skeletal muscle after spinal cord injury. Spinal Cord. 1999;37(4):251–7.CrossRefPubMed Hillegass EA, Dudley GA. Surface electrical stimulation of skeletal muscle after spinal cord injury. Spinal Cord. 1999;37(4):251–7.CrossRefPubMed
13.
go back to reference Gordon T, Mao J. Muscle atrophy and procedures for training after spinal-cord injury. Phys Ther. 1994;74(1):50–60.CrossRefPubMed Gordon T, Mao J. Muscle atrophy and procedures for training after spinal-cord injury. Phys Ther. 1994;74(1):50–60.CrossRefPubMed
14.
go back to reference Bersch I, Tesini S, Bersch U, Frotzler A. Functional electrical stimulation in spinal cord injury: clinical evidence versus daily practice. Artif Organs. 2015;39(10):849–54.CrossRefPubMed Bersch I, Tesini S, Bersch U, Frotzler A. Functional electrical stimulation in spinal cord injury: clinical evidence versus daily practice. Artif Organs. 2015;39(10):849–54.CrossRefPubMed
15.
go back to reference American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.CrossRef American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.CrossRef
17.
go back to reference Gorgey AS, Mahoney E, Kendall T, Dudley GA. Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol. 2006;97(6):737–44.CrossRefPubMed Gorgey AS, Mahoney E, Kendall T, Dudley GA. Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol. 2006;97(6):737–44.CrossRefPubMed
18.
go back to reference Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM. Strategies for rapid muscle fatigue reduction during fes exercise in individuals with spinal cord injury: a systematic review. PLoS One. 2016;11(2):e0149024.CrossRefPubMedPubMedCentral Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM. Strategies for rapid muscle fatigue reduction during fes exercise in individuals with spinal cord injury: a systematic review. PLoS One. 2016;11(2):e0149024.CrossRefPubMedPubMedCentral
19.
go back to reference Karu ZZ, Durfee WK, Barzilai AM. Reducing muscle fatigue in fes applications by stimulating with N-let pulse trains. IEEE Trans Biomed Eng. 1995;42(8):809–17.CrossRefPubMed Karu ZZ, Durfee WK, Barzilai AM. Reducing muscle fatigue in fes applications by stimulating with N-let pulse trains. IEEE Trans Biomed Eng. 1995;42(8):809–17.CrossRefPubMed
20.
go back to reference Aldayel A, Jubeau M, McGuigan MR, Nosaka K. Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol. 2010;108(4):709–17.CrossRefPubMed Aldayel A, Jubeau M, McGuigan MR, Nosaka K. Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol. 2010;108(4):709–17.CrossRefPubMed
21.
go back to reference Gorgey AS, Poarch HJ, Dolbow DR, Castillo T, Gater DR. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. J Rehab Res Dev. 2014;51(9):1455–68.CrossRef Gorgey AS, Poarch HJ, Dolbow DR, Castillo T, Gater DR. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. J Rehab Res Dev. 2014;51(9):1455–68.CrossRef
22.
go back to reference Bigland-Ritchie B, Jones DA, Woods JJ. Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Exp Neurol. 1979;64(2):414–27.CrossRefPubMed Bigland-Ritchie B, Jones DA, Woods JJ. Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Exp Neurol. 1979;64(2):414–27.CrossRefPubMed
23.
go back to reference Mizrahi J. Fatigue in functional electrical stimulation in spinal cord injury. J Electromyogr Kinesiol. 1997;7(1):1–2.CrossRefPubMed Mizrahi J. Fatigue in functional electrical stimulation in spinal cord injury. J Electromyogr Kinesiol. 1997;7(1):1–2.CrossRefPubMed
24.
go back to reference Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399–407.CrossRefPubMed Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399–407.CrossRefPubMed
25.
go back to reference Fouré A, Nosaka K, Wegrzyk J, Duhamel G, Le Troter A, Boudinet H, et al. Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage. PLoS One. 2014;9(9):e107298.CrossRefPubMedPubMedCentral Fouré A, Nosaka K, Wegrzyk J, Duhamel G, Le Troter A, Boudinet H, et al. Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage. PLoS One. 2014;9(9):e107298.CrossRefPubMedPubMedCentral
26.
go back to reference Adams GR, Harris RT, Woodard D, Dudley GA. Mapping of electrical muscle stimulation using MRI. J Appl Physiol. 1993;74(2):532–7.PubMed Adams GR, Harris RT, Woodard D, Dudley GA. Mapping of electrical muscle stimulation using MRI. J Appl Physiol. 1993;74(2):532–7.PubMed
27.
go back to reference Gorgey AS, Cho GM, Dolbow DR, Gater DR. Differences in current amplitude evoking leg extension in individuals with spinal cord injury. Neurorehabilitation. 2013;33(1):161–70.PubMed Gorgey AS, Cho GM, Dolbow DR, Gater DR. Differences in current amplitude evoking leg extension in individuals with spinal cord injury. Neurorehabilitation. 2013;33(1):161–70.PubMed
28.
go back to reference Allen K, Goodman C. Using electrical stimulation: A guideline for allied health professionals. Sydney: Sydney Local Health District and Royal Rehabilitation Center; 2014. Allen K, Goodman C. Using electrical stimulation: A guideline for allied health professionals. Sydney: Sydney Local Health District and Royal Rehabilitation Center; 2014.
29.
go back to reference Crameri RM, Weston A, Climstein M, Davis GM, Sutton JR. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports. 2002;12(5):316–22.CrossRefPubMed Crameri RM, Weston A, Climstein M, Davis GM, Sutton JR. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports. 2002;12(5):316–22.CrossRefPubMed
30.
go back to reference Black CD, McCully KK. Force per active area and muscle injury during electrically stimulated contractions. Med Sci Sports Exerc. 2008;40(9):1596–604.CrossRefPubMedPubMedCentral Black CD, McCully KK. Force per active area and muscle injury during electrically stimulated contractions. Med Sci Sports Exerc. 2008;40(9):1596–604.CrossRefPubMedPubMedCentral
31.
go back to reference Daussin FN, Zoll J, Ponsot E, Dufour SP, Doutreleau S, Lonsdorfer E, et al. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol. 2008;104(5):1436–41.CrossRefPubMed Daussin FN, Zoll J, Ponsot E, Dufour SP, Doutreleau S, Lonsdorfer E, et al. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol. 2008;104(5):1436–41.CrossRefPubMed
32.
go back to reference Bouchard DR, Heroux M, Janssen I. Association between muscle mass, leg strength, and fat mass with physical function in older adults: influence of age and sex. J Aging Health. 2011;23(2):313–28.CrossRefPubMed Bouchard DR, Heroux M, Janssen I. Association between muscle mass, leg strength, and fat mass with physical function in older adults: influence of age and sex. J Aging Health. 2011;23(2):313–28.CrossRefPubMed
33.
go back to reference Collins DF. Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev. 2007;35(3):102–9.CrossRefPubMed Collins DF. Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev. 2007;35(3):102–9.CrossRefPubMed
34.
go back to reference Lagerquist O, Collins DF. Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Muscle Nerve. 2010;42(6):886–93.CrossRefPubMed Lagerquist O, Collins DF. Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Muscle Nerve. 2010;42(6):886–93.CrossRefPubMed
35.
go back to reference Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111(10):2409–26.CrossRefPubMed Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111(10):2409–26.CrossRefPubMed
36.
go back to reference Bergquist AJ, Wiest MJ, Okuma Y, Collins DF. H-reflexes reduce fatigue of evoked contractions after spinal cord injury. Muscle Nerve. 2014;50(2):224–34.CrossRefPubMed Bergquist AJ, Wiest MJ, Okuma Y, Collins DF. H-reflexes reduce fatigue of evoked contractions after spinal cord injury. Muscle Nerve. 2014;50(2):224–34.CrossRefPubMed
37.
go back to reference Clair-Auger JM, Collins DF, Dewald JPA. The effects of wide pulse neuromuscular electrical stimulation on elbow flexion torque in individuals with chronic hemiparetic stroke. Clin Neurophysiol. 2012;123(11):2247–55.CrossRefPubMedPubMedCentral Clair-Auger JM, Collins DF, Dewald JPA. The effects of wide pulse neuromuscular electrical stimulation on elbow flexion torque in individuals with chronic hemiparetic stroke. Clin Neurophysiol. 2012;123(11):2247–55.CrossRefPubMedPubMedCentral
38.
go back to reference Neyroud D, Armand S, De Coulon G, Da Silva SRD, Wegrzyk J, Gondin J, et al. Wide-pulse-high-frequency neuromuscular electrical stimulation in cerebral palsy. Clin Neurophysiol. 2016;127(2):1530–9.CrossRefPubMed Neyroud D, Armand S, De Coulon G, Da Silva SRD, Wegrzyk J, Gondin J, et al. Wide-pulse-high-frequency neuromuscular electrical stimulation in cerebral palsy. Clin Neurophysiol. 2016;127(2):1530–9.CrossRefPubMed
39.
go back to reference Bergquist AJ, Wiest MJ, Collins DF. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. J Appl Physiol. 2012;113(1):78–89.CrossRefPubMed Bergquist AJ, Wiest MJ, Collins DF. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. J Appl Physiol. 2012;113(1):78–89.CrossRefPubMed
40.
go back to reference Collins DF, Burke D, Gandevia SC. Large involuntary forces consistent with plateau-like behavior of human motoneurons. J Neurosci. 2001;21(11):4059–65.PubMed Collins DF, Burke D, Gandevia SC. Large involuntary forces consistent with plateau-like behavior of human motoneurons. J Neurosci. 2001;21(11):4059–65.PubMed
41.
42.
go back to reference Dean JC, Clair-Auger JM, Lagerquist O, Collins DF. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve. Front Hum Neurosci. 2014;8:1002.CrossRefPubMedPubMedCentral Dean JC, Clair-Auger JM, Lagerquist O, Collins DF. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve. Front Hum Neurosci. 2014;8:1002.CrossRefPubMedPubMedCentral
43.
go back to reference Clair-Auger JM, Lagerquist O, Collins DF. Depression and recovery of reflex amplitude during electrical stimulation after spinal cord injury. Clin Neurophysiol. 2013;124(4):723–31.CrossRefPubMed Clair-Auger JM, Lagerquist O, Collins DF. Depression and recovery of reflex amplitude during electrical stimulation after spinal cord injury. Clin Neurophysiol. 2013;124(4):723–31.CrossRefPubMed
44.
go back to reference Neyroud D, Dodd D, Gondin J, Maffiuletti NA, Kayser B, Place N. Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation. J Appl Physiol. 2014;116(10):1281–9.CrossRefPubMed Neyroud D, Dodd D, Gondin J, Maffiuletti NA, Kayser B, Place N. Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation. J Appl Physiol. 2014;116(10):1281–9.CrossRefPubMed
45.
go back to reference Ribot-Ciscar E, Butler JE, Thomas CK. Facilitation of triceps brachii muscle contraction by tendon vibration after chronic cervical spinal cord injury. J Appl Physiol. 2003;94(6):2358–67.CrossRefPubMed Ribot-Ciscar E, Butler JE, Thomas CK. Facilitation of triceps brachii muscle contraction by tendon vibration after chronic cervical spinal cord injury. J Appl Physiol. 2003;94(6):2358–67.CrossRefPubMed
46.
go back to reference Cotey D, Hornby TG, Gordon KE, Schmit BD. Increases in muscle activity produced by vibration of the thigh muscles during locomotion in chronic human spinal cord injury. Exp Brain Res. 2009;196(3):361–74.CrossRefPubMed Cotey D, Hornby TG, Gordon KE, Schmit BD. Increases in muscle activity produced by vibration of the thigh muscles during locomotion in chronic human spinal cord injury. Exp Brain Res. 2009;196(3):361–74.CrossRefPubMed
47.
go back to reference Trajano GS, Seitz LB, Nosaka K, Blazevich AJ. Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Appl Physiol. 2014;117(12):1486–92.CrossRefPubMed Trajano GS, Seitz LB, Nosaka K, Blazevich AJ. Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Appl Physiol. 2014;117(12):1486–92.CrossRefPubMed
48.
go back to reference McPherson JG, Ellis MD, Heckman CJ, Dewald JP. Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke. J Neurophysiol. 2008;100(6):3236–43.CrossRefPubMedPubMedCentral McPherson JG, Ellis MD, Heckman CJ, Dewald JP. Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke. J Neurophysiol. 2008;100(6):3236–43.CrossRefPubMedPubMedCentral
49.
50.
go back to reference Behrman AL, Bowden MG, Nair PM. Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther. 2006;86(10):1406–25.CrossRefPubMed Behrman AL, Bowden MG, Nair PM. Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther. 2006;86(10):1406–25.CrossRefPubMed
51.
go back to reference Edgerton VR, Roy RR. Activity-dependent plasticity of spinal locomotion: implications for sensory processing. Exerc Sport Sci Rev. 2009;37(4):171–8.PubMedPubMedCentral Edgerton VR, Roy RR. Activity-dependent plasticity of spinal locomotion: implications for sensory processing. Exerc Sport Sci Rev. 2009;37(4):171–8.PubMedPubMedCentral
52.
go back to reference Magalhães FH, de Toledo DR, Kohn AF. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans. J NeuroEng Rehabil. 2013;10(1):32.CrossRefPubMedPubMedCentral Magalhães FH, de Toledo DR, Kohn AF. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans. J NeuroEng Rehabil. 2013;10(1):32.CrossRefPubMedPubMedCentral
53.
go back to reference Magalhaes FH, Kohn AF. Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles. J Neuroeng Rehabil. 2010;7. doi:10.1186/1743-0003-7-26. Magalhaes FH, Kohn AF. Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles. J Neuroeng Rehabil. 2010;7. doi:10.​1186/​1743-0003-7-26.
54.
go back to reference Burke D, Schiller HH. Discharge pattern of single motor units in the tonic vibration reflex of human triceps surae. J Neurol Neurosurg Psychiatry. 1976;39(8):729–41.CrossRefPubMedPubMedCentral Burke D, Schiller HH. Discharge pattern of single motor units in the tonic vibration reflex of human triceps surae. J Neurol Neurosurg Psychiatry. 1976;39(8):729–41.CrossRefPubMedPubMedCentral
55.
go back to reference Rabchevsky AG, Kitzman PH. Latest approaches for the treatment of spasticity and autonomic dysreflexia in chronic spinal cord injury. Neurotherapeutics. 2011;8(2):274–82.CrossRefPubMedPubMedCentral Rabchevsky AG, Kitzman PH. Latest approaches for the treatment of spasticity and autonomic dysreflexia in chronic spinal cord injury. Neurotherapeutics. 2011;8(2):274–82.CrossRefPubMedPubMedCentral
56.
go back to reference Laufer Y, Ries JD, Leininger PM, Alon G. Quadriceps femoris muscle torques and fatigue generated by neuromuscular electrical stimulation with three different waveforms. Phys Ther. 2001;81(7):1307–16.PubMed Laufer Y, Ries JD, Leininger PM, Alon G. Quadriceps femoris muscle torques and fatigue generated by neuromuscular electrical stimulation with three different waveforms. Phys Ther. 2001;81(7):1307–16.PubMed
57.
go back to reference Field-Fote EC, Anderson B, Robertson VJ, Spielholz NI. Monophasic and biphasic stimulation evoke different responses. Muscle Nerve. 2003;28(2):239–41.CrossRefPubMed Field-Fote EC, Anderson B, Robertson VJ, Spielholz NI. Monophasic and biphasic stimulation evoke different responses. Muscle Nerve. 2003;28(2):239–41.CrossRefPubMed
58.
go back to reference Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–74.CrossRefPubMed Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–74.CrossRefPubMed
59.
go back to reference Nosaka K, Clarkson PM. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc. 1995;27(9):1263–9.CrossRefPubMed Nosaka K, Clarkson PM. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc. 1995;27(9):1263–9.CrossRefPubMed
60.
go back to reference Ohrbach R, Gale EN. Pressure pain thresholds, clinical assessment, and differential diagnosis, reliability and validity in patients with myogenic pain. Pain. 1989;39(2):157–69.CrossRefPubMed Ohrbach R, Gale EN. Pressure pain thresholds, clinical assessment, and differential diagnosis, reliability and validity in patients with myogenic pain. Pain. 1989;39(2):157–69.CrossRefPubMed
61.
go back to reference Nosaka K, Clarkson PM. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc. 1996;28(8):953–61.CrossRefPubMed Nosaka K, Clarkson PM. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc. 1996;28(8):953–61.CrossRefPubMed
62.
go back to reference Kanda K, Burke RE, Walmsley B. Differential control of fast and slow twitch motor units in the decerebrate cat. Exp Brain Res. 1977;29(1):57–74.CrossRefPubMed Kanda K, Burke RE, Walmsley B. Differential control of fast and slow twitch motor units in the decerebrate cat. Exp Brain Res. 1977;29(1):57–74.CrossRefPubMed
63.
go back to reference Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28(3):560–80.PubMed Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28(3):560–80.PubMed
64.
go back to reference Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.CrossRefPubMed Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.CrossRefPubMed
65.
go back to reference Bax L, Staes F, Verhagen A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med. 2005;35(3):191–212.CrossRefPubMed Bax L, Staes F, Verhagen A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med. 2005;35(3):191–212.CrossRefPubMed
66.
go back to reference Smith GV, Alon G, Roys SR, Gullapalli RP. Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res. 2003;150(1):33–9.CrossRefPubMed Smith GV, Alon G, Roys SR, Gullapalli RP. Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res. 2003;150(1):33–9.CrossRefPubMed
67.
go back to reference Dean JC, Yates LM, Collins DF. Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol. 2007;103(1):170–6.CrossRefPubMed Dean JC, Yates LM, Collins DF. Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol. 2007;103(1):170–6.CrossRefPubMed
68.
go back to reference Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve. 2007;36(1):21–9.CrossRefPubMed Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve. 2007;36(1):21–9.CrossRefPubMed
69.
go back to reference Regina Dias Da Silva S, Neyroud D, Maffiuletti NA, Gondin J, Place N. Twitch potentiation induced by two different modalities of neuromuscular electrical stimulation: implications for motor unit recruitment. Muscle Nerve. 2015;51(3):412–8.CrossRefPubMed Regina Dias Da Silva S, Neyroud D, Maffiuletti NA, Gondin J, Place N. Twitch potentiation induced by two different modalities of neuromuscular electrical stimulation: implications for motor unit recruitment. Muscle Nerve. 2015;51(3):412–8.CrossRefPubMed
70.
go back to reference Wegrzyk J, Foure A, Le Fur Y, Maffiuletti NA, Vilmen C, Guye M, et al. Responders to wide-pulse, high-frequency neuromuscular electrical stimulation show reduced metabolic demand: a 31P-MRS study in humans. PLoS One. 2015;10(11):e0143972.CrossRefPubMedPubMedCentral Wegrzyk J, Foure A, Le Fur Y, Maffiuletti NA, Vilmen C, Guye M, et al. Responders to wide-pulse, high-frequency neuromuscular electrical stimulation show reduced metabolic demand: a 31P-MRS study in humans. PLoS One. 2015;10(11):e0143972.CrossRefPubMedPubMedCentral
71.
go back to reference Ribot-Ciscar E, Rossi-Durand C, Roll JP. Muscle spindle activity following muscle tendon vibration in man. Neurosci Lett. 1998;258(3):147–50.CrossRefPubMed Ribot-Ciscar E, Rossi-Durand C, Roll JP. Muscle spindle activity following muscle tendon vibration in man. Neurosci Lett. 1998;258(3):147–50.CrossRefPubMed
72.
go back to reference Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D. Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol. 1991;440:497–512.CrossRefPubMedPubMedCentral Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D. Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol. 1991;440:497–512.CrossRefPubMedPubMedCentral
73.
go back to reference Jubeau M, Sartorio A, Marinone PG, Agosti F, Van Hoecke J, Nosaka K, et al. Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage. J Appl Physiol. 2008;104(1):75–81.CrossRefPubMed Jubeau M, Sartorio A, Marinone PG, Agosti F, Van Hoecke J, Nosaka K, et al. Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage. J Appl Physiol. 2008;104(1):75–81.CrossRefPubMed
74.
go back to reference Nosaka K, Aldayel A, Jubeau M, Chen TC. Muscle damage induced by electrical stimulation. Eur J Appl Physiol. 2011;111(10):2427–37.CrossRefPubMed Nosaka K, Aldayel A, Jubeau M, Chen TC. Muscle damage induced by electrical stimulation. Eur J Appl Physiol. 2011;111(10):2427–37.CrossRefPubMed
75.
go back to reference Jubeau M, Muthalib M, Millet GY, Maffiuletti NA, Nosaka K. Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors. Eur J Appl Physiol. 2012;112(2):429–38.CrossRefPubMed Jubeau M, Muthalib M, Millet GY, Maffiuletti NA, Nosaka K. Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors. Eur J Appl Physiol. 2012;112(2):429–38.CrossRefPubMed
76.
go back to reference Watanabe K, Akima H. Normalized EMG to normalized torque relationship of vastus intermedius muscle during isometric knee extension. Eur J Appl Physiol. 2009;106(5):665–73.CrossRefPubMed Watanabe K, Akima H. Normalized EMG to normalized torque relationship of vastus intermedius muscle during isometric knee extension. Eur J Appl Physiol. 2009;106(5):665–73.CrossRefPubMed
77.
go back to reference Maffiuletti NA, Lepers R. Quadriceps femoris torque and EMG activity in seated versus supine position. Med Sci Sports Exerc. 2003;35(9):1511–6.CrossRefPubMed Maffiuletti NA, Lepers R. Quadriceps femoris torque and EMG activity in seated versus supine position. Med Sci Sports Exerc. 2003;35(9):1511–6.CrossRefPubMed
78.
go back to reference Matta TT, Nascimento FX, Trajano GS, Simao R, Willardson JM, Oliveira LF. Selective hypertrophy of the quadriceps musculature after 14 weeks of isokinetic and conventional resistance training. Clin Physiol Funct Imaging 2015. doi:10.1111/cpf.12277. Matta TT, Nascimento FX, Trajano GS, Simao R, Willardson JM, Oliveira LF. Selective hypertrophy of the quadriceps musculature after 14 weeks of isokinetic and conventional resistance training. Clin Physiol Funct Imaging 2015. doi:10.​1111/​cpf.​12277.
79.
go back to reference Ebenbichler G, Kollmitzer J, Quittan M, Uhl F, Kirtley C, Fialka V. EMG fatigue patterns accompanying isometric fatiguing knee-extensions are different in mono- and bi-articular muscles. Electroencephalogr Clin Neurophysiol. 1998;109(3):256–62.CrossRefPubMed Ebenbichler G, Kollmitzer J, Quittan M, Uhl F, Kirtley C, Fialka V. EMG fatigue patterns accompanying isometric fatiguing knee-extensions are different in mono- and bi-articular muscles. Electroencephalogr Clin Neurophysiol. 1998;109(3):256–62.CrossRefPubMed
80.
go back to reference Mackey AL, Bojsen-Moller J, Qvortrup K, Langberg H, Suetta C, Kalliokoski KK, et al. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. J Appl Physiol. 2008;105(5):1620–7.CrossRefPubMed Mackey AL, Bojsen-Moller J, Qvortrup K, Langberg H, Suetta C, Kalliokoski KK, et al. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. J Appl Physiol. 2008;105(5):1620–7.CrossRefPubMed
81.
go back to reference Aldayel A, Jubeau M, McGuigan M, Nosaka K. Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses. J Appl Physiol. 2010;109(3):735–44.CrossRefPubMed Aldayel A, Jubeau M, McGuigan M, Nosaka K. Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses. J Appl Physiol. 2010;109(3):735–44.CrossRefPubMed
82.
go back to reference Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, et al. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J. 2011;25(6):1943–59.CrossRefPubMedPubMedCentral Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, et al. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J. 2011;25(6):1943–59.CrossRefPubMedPubMedCentral
Metadata
Title
Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force
Authors
Vanesa Bochkezanian
Robert U. Newton
Gabriel S. Trajano
Amilton Vieira
Timothy S. Pulverenti
Anthony J. Blazevich
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2017
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-0862-x

Other articles of this Issue 1/2017

BMC Neurology 1/2017 Go to the issue