Skip to main content
Top
Published in: BMC Neurology 1/2017

Open Access 01-12-2017 | Research article

Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies

Authors: Erin Oerton, Andreas Bender

Published in: BMC Neurology | Issue 1/2017

Login to get access

Abstract

Background

As the popularity of transcriptomic analysis has grown, the reported lack of concordance between different studies of the same condition has become a growing concern, raising questions as to the representativeness of different study types, such as non-human disease models or studies of surrogate tissues, to gene expression in the human condition.

Methods

In a comparison of 33 microarray studies of Parkinson’s disease, correlation and clustering analyses were used to determine the factors influencing concordance between studies, including agreement between different tissue types, different microarray platforms, and between neurotoxic and genetic disease models and human Parkinson’s disease.

Results

Concordance over all studies is low, with correlation of only 0.05 between differential gene expression signatures on average, but increases within human patients and studies of the same tissue type, rising to 0.38 for studies of human substantia nigra. Agreement of animal models, however, is dependent on model type. Studies of brain tissue from Parkinson’s disease patients (specifically the substantia nigra) form a distinct group, showing patterns of differential gene expression noticeably different from that in non-brain tissues and animal models of Parkinson’s disease; while comparison with other brain diseases (Alzheimer’s disease and brain cancer) suggests that the mixed study types display a general signal of neurodegenerative disease. A meta-analysis of these 33 microarray studies demonstrates the greater ability of studies in humans and highly-affected tissues to identify genes previously known to be associated with Parkinson’s disease.

Conclusions

The observed clustering and concordance results suggest the existence of a ‘characteristic’ signal of Parkinson’s disease found in significantly affected human tissues in humans. These results help to account for the consistency (or lack thereof) so far observed in microarray studies of Parkinson’s disease, and act as a guide to the selection of transcriptomic studies most representative of the underlying gene expression changes in the human disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang M, Yao C, Guo Z, et al. Apparently low reproducibility of true differential expression discoveries in microarray studies. Bioinformatics. 2008;24:2057–63.CrossRef Zhang M, Yao C, Guo Z, et al. Apparently low reproducibility of true differential expression discoveries in microarray studies. Bioinformatics. 2008;24:2057–63.CrossRef
2.
go back to reference Zheng B, Liao Z, Locascio J. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl. 2010;2:ra73. Zheng B, Liao Z, Locascio J. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl. 2010;2:ra73.
3.
go back to reference Sutherland GT, Matigian NA, Chalk AM, Anderson MJ, Silburn PA, Mackay-Sim A, Wells CA, Mellick GD. A cross-study transcriptional analysis of Parkinson’s disease. PLoS One. 2009;4:1–8.CrossRef Sutherland GT, Matigian NA, Chalk AM, Anderson MJ, Silburn PA, Mackay-Sim A, Wells CA, Mellick GD. A cross-study transcriptional analysis of Parkinson’s disease. PLoS One. 2009;4:1–8.CrossRef
4.
go back to reference Cruz-Monteagudo M, Borges F, Paz-Y-Mino C, Cordeiro MNDS, Rebelo I, Perez-Castillo Y, Helguera AM, Sanchez-Rodriguez A, Tejera E. Efficient and biologically relevant consensus strategy for Parkinson’s disease gene prioritization. BMC Med Genomics. 2016;9:12.CrossRef Cruz-Monteagudo M, Borges F, Paz-Y-Mino C, Cordeiro MNDS, Rebelo I, Perez-Castillo Y, Helguera AM, Sanchez-Rodriguez A, Tejera E. Efficient and biologically relevant consensus strategy for Parkinson’s disease gene prioritization. BMC Med Genomics. 2016;9:12.CrossRef
7.
go back to reference Russ J, Futschik ME. Comparison and consolidation of microarray data sets of human tissue expression. BMC Genomics. 2010;11:305.CrossRef Russ J, Futschik ME. Comparison and consolidation of microarray data sets of human tissue expression. BMC Genomics. 2010;11:305.CrossRef
8.
go back to reference Konopka G, Friedrich T, Davis-Turak J, et al. Human-Specific Transcriptional Networks in the Brain. Neuron. 2012;75:601–17.CrossRef Konopka G, Friedrich T, Davis-Turak J, et al. Human-Specific Transcriptional Networks in the Brain. Neuron. 2012;75:601–17.CrossRef
9.
go back to reference Strand AD, Aragaki AK, Baquet ZC, Hodges A, Cunningham P, Holmans P, Jones KR, Jones L, Kooperberg C, Olson JM. Conservation of regional gene expression in mouse and human brain. PLoS Genet. 2007;3:0572–83.CrossRef Strand AD, Aragaki AK, Baquet ZC, Hodges A, Cunningham P, Holmans P, Jones KR, Jones L, Kooperberg C, Olson JM. Conservation of regional gene expression in mouse and human brain. PLoS Genet. 2007;3:0572–83.CrossRef
10.
go back to reference Dudley JT, Tibshirani R, Deshpande T, Butte AJ. Disease signatures are robust across tissues and experiments. Mol Syst Biol. 2009;5:307.CrossRef Dudley JT, Tibshirani R, Deshpande T, Butte AJ. Disease signatures are robust across tissues and experiments. Mol Syst Biol. 2009;5:307.CrossRef
11.
go back to reference Miller RM, Federoff HJ. Altered gene expression profiles reveal similarities and differences between Parkinson disease and model systems. Neuroscientist. 2005;11:539–49.CrossRef Miller RM, Federoff HJ. Altered gene expression profiles reveal similarities and differences between Parkinson disease and model systems. Neuroscientist. 2005;11:539–49.CrossRef
13.
go back to reference Bandapalli OR, Kahlert C, Hellstern V, Galindo L, Schirmacher P, Weitz J, Brand K. Cross-species comparison of biological themes and underlying genes on a global gene expression scale in a mouse model of colorectal liver metastasis and in clinical specimens. BMC Genomics. 2008;9:448.CrossRef Bandapalli OR, Kahlert C, Hellstern V, Galindo L, Schirmacher P, Weitz J, Brand K. Cross-species comparison of biological themes and underlying genes on a global gene expression scale in a mouse model of colorectal liver metastasis and in clinical specimens. BMC Genomics. 2008;9:448.CrossRef
14.
go back to reference Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.CrossRef Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.CrossRef
15.
go back to reference Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci. 2014;112:1401965111. Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci. 2014;112:1401965111.
16.
go back to reference Shi L, Reid LH, Jones WD, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24:1151–61.CrossRef Shi L, Reid LH, Jones WD, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24:1151–61.CrossRef
17.
go back to reference Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J. Independence and reproducibility across microarray platforms. Nat Methods. 2005;2:337–44.CrossRef Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J. Independence and reproducibility across microarray platforms. Nat Methods. 2005;2:337–44.CrossRef
18.
go back to reference Miller R, Callhan L, Casaceli C, Chen L, Kiser G, Chui B, Kaysser T, Sendera T, Palaniappan C, Federoff H. Dysregulation of Gene Expression in the 1-Mehyl-4-Phenyl- 1,2,3,6-Tetrahydropyridine-Lesioned Mouse Substantia Nigra. J Neurosci. 2004;24:7445–54.CrossRef Miller R, Callhan L, Casaceli C, Chen L, Kiser G, Chui B, Kaysser T, Sendera T, Palaniappan C, Federoff H. Dysregulation of Gene Expression in the 1-Mehyl-4-Phenyl- 1,2,3,6-Tetrahydropyridine-Lesioned Mouse Substantia Nigra. J Neurosci. 2004;24:7445–54.CrossRef
20.
go back to reference Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A. 2006;103:5923–8.CrossRef Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A. 2006;103:5923–8.CrossRef
21.
go back to reference Stretch C, Khan S, Asgarian N, et al. Effects of Sample Size on Differential Gene Expression, Rank Order and Prediction Accuracy of a Gene Signature. PLoS One. 2013;8:6–11.CrossRef Stretch C, Khan S, Asgarian N, et al. Effects of Sample Size on Differential Gene Expression, Rank Order and Prediction Accuracy of a Gene Signature. PLoS One. 2013;8:6–11.CrossRef
22.
go back to reference Preece P, Cairns NJ. Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res. 2003;118:60–71.CrossRef Preece P, Cairns NJ. Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res. 2003;118:60–71.CrossRef
23.
go back to reference Atz M, Walsh D, Cartagena P, et al. Methodological considerations for gene expression profiling of human brain. J Neurosci Methods. 2007;163:295–309.CrossRef Atz M, Walsh D, Cartagena P, et al. Methodological considerations for gene expression profiling of human brain. J Neurosci Methods. 2007;163:295–309.CrossRef
24.
go back to reference Kasim A, Shkedy Z, Lin D, Van Sanden S, Yekutieli JCAD, Camilleri M, Aerssens J, Talloen W. Translation of disease associated gene signatures across tissues. Int J Data Min Bioinform. 2015;11:301–13.CrossRef Kasim A, Shkedy Z, Lin D, Van Sanden S, Yekutieli JCAD, Camilleri M, Aerssens J, Talloen W. Translation of disease associated gene signatures across tissues. Int J Data Min Bioinform. 2015;11:301–13.CrossRef
25.
go back to reference Guo L, Lobenhofer EK, Wang C, et al. Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat Biotechnol. 2006;24:1162–9.CrossRef Guo L, Lobenhofer EK, Wang C, et al. Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat Biotechnol. 2006;24:1162–9.CrossRef
26.
go back to reference Zheng-Bradley X, Rung J, Parkinson H, Brazma A. Large scale comparison of global gene expression patterns in human and mouse. Genome Biol. 2010;11:R124.CrossRef Zheng-Bradley X, Rung J, Parkinson H, Brazma A. Large scale comparison of global gene expression patterns in human and mouse. Genome Biol. 2010;11:R124.CrossRef
27.
go back to reference Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci. 2014;17:1022–30.CrossRef Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci. 2014;17:1022–30.CrossRef
28.
go back to reference Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.CrossRef Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.CrossRef
29.
go back to reference Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86:109–27.CrossRef Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86:109–27.CrossRef
31.
go back to reference Dumitriu A, Moser C, Hadzi TC, Williamson SL, Pacheco CD, Hendricks AE, Latourelle JC, Wilk JB, DeStefano AL, Myers RH. Postmortem Interval Influences α -Synuclein Expression in Parkinson Disease Brain. Parkinsons Dis. 2012;2012:1–8.CrossRef Dumitriu A, Moser C, Hadzi TC, Williamson SL, Pacheco CD, Hendricks AE, Latourelle JC, Wilk JB, DeStefano AL, Myers RH. Postmortem Interval Influences α -Synuclein Expression in Parkinson Disease Brain. Parkinsons Dis. 2012;2012:1–8.CrossRef
32.
go back to reference Lam SH, Wu YL, Vega VB, et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol. 2006;24:73–5.CrossRef Lam SH, Wu YL, Vega VB, et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol. 2006;24:73–5.CrossRef
33.
go back to reference Ach RA, Floore A, Curry B, Glas A, Pover R, Tsalenko A, Sampas N, Tsang P, Bruhn L, Van’t Veer LJ. Factors influencing reproducibility of gene expression measurements using DNA microarrays. Cancer Res. 2005;65:102. Ach RA, Floore A, Curry B, Glas A, Pover R, Tsalenko A, Sampas N, Tsang P, Bruhn L, Van’t Veer LJ. Factors influencing reproducibility of gene expression measurements using DNA microarrays. Cancer Res. 2005;65:102.
34.
go back to reference van Hijum SAFT, de Jong A, Baerends RJS, Karsens HA, Kramer NE, Larsen R, den Hengst CD, Albers CJ, Kok J, Kuipers OP. A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data. BMC Genomics. 2005;6:77.CrossRef van Hijum SAFT, de Jong A, Baerends RJS, Karsens HA, Kramer NE, Larsen R, den Hengst CD, Albers CJ, Kok J, Kuipers OP. A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data. BMC Genomics. 2005;6:77.CrossRef
35.
go back to reference Jaksik R, Iwanaszko M, Rzeszowska-Wolny J, Kimmel M. Microarray experiments and factors which affect their reliability. Biol Direct. 2015;10:46.CrossRef Jaksik R, Iwanaszko M, Rzeszowska-Wolny J, Kimmel M. Microarray experiments and factors which affect their reliability. Biol Direct. 2015;10:46.CrossRef
36.
go back to reference Mistry M, Pavlidis P. A cross-laboratory comparison of expression profiling data from normal human postmortem brain. Neuroscience. 2010;167:384–95.CrossRef Mistry M, Pavlidis P. A cross-laboratory comparison of expression profiling data from normal human postmortem brain. Neuroscience. 2010;167:384–95.CrossRef
37.
go back to reference Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B, Asteris G, Clark TW, Frosch MP, Standaert DG. Effects of gender on nigral gene expression and parkinson disease. Neurobiol Dis. 2007;26:606–14.CrossRef Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B, Asteris G, Clark TW, Frosch MP, Standaert DG. Effects of gender on nigral gene expression and parkinson disease. Neurobiol Dis. 2007;26:606–14.CrossRef
38.
go back to reference Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.CrossRef Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.CrossRef
39.
go back to reference Lewis PA, Cookson MR. Gene expression in the Parkinson’s disease brain. Brain Res Bull. 2012;88:302–12.CrossRef Lewis PA, Cookson MR. Gene expression in the Parkinson’s disease brain. Brain Res Bull. 2012;88:302–12.CrossRef
40.
go back to reference Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2015;17:1–11. Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2015;17:1–11.
42.
go back to reference Gautier L, Cope L, Bolstad BM, Irizarry RA. affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–15.CrossRef Gautier L, Cope L, Bolstad BM, Irizarry RA. affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–15.CrossRef
43.
go back to reference Saccenti E. Correlation patterns in experimental data are affected by normalization procedures: consequences for data analysis and network inference. J Proteome Res. 2016;16(2):619–34. acs.jproteome.6b00704.CrossRef Saccenti E. Correlation patterns in experimental data are affected by normalization procedures: consequences for data analysis and network inference. J Proteome Res. 2016;16(2):619–34. acs.jproteome.6b00704.CrossRef
44.
go back to reference Lim WK, Wang K, Lefebvre C, Califano A. Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics. 2007;23:i282.CrossRef Lim WK, Wang K, Lefebvre C, Califano A. Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics. 2007;23:i282.CrossRef
45.
go back to reference Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics - A bioconductor package for quality assessment of microarray data. Bioinformatics. 2009;25:415–6.CrossRef Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics - A bioconductor package for quality assessment of microarray data. Bioinformatics. 2009;25:415–6.CrossRef
47.
go back to reference Kuhn A, Luthi-Carter R, Delorenzi M. Cross-species and cross-platform gene expression studies with the Bioconductor-compliant R package “annotationTools”. BMC Bioinformatics. 2008;9:26.CrossRef Kuhn A, Luthi-Carter R, Delorenzi M. Cross-species and cross-platform gene expression studies with the Bioconductor-compliant R package “annotationTools”. BMC Bioinformatics. 2008;9:26.CrossRef
48.
go back to reference Yu G, He Q-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst. 2015;12:477–9.CrossRef Yu G, He Q-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst. 2015;12:477–9.CrossRef
49.
go back to reference Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts HJWL, Quackenbush J. Inconsistency in large pharmacogenomic studies. Nature. 2013;504:389–93.CrossRef Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts HJWL, Quackenbush J. Inconsistency in large pharmacogenomic studies. Nature. 2013;504:389–93.CrossRef
50.
go back to reference Kilpinen S, Autio R, Ojala K, et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 2008;9:R139.CrossRef Kilpinen S, Autio R, Ojala K, et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 2008;9:R139.CrossRef
53.
go back to reference Kadota K, Nakai Y, Shimizu K. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity. Algorithms Mol Biol. 2009;4:7.CrossRef Kadota K, Nakai Y, Shimizu K. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity. Algorithms Mol Biol. 2009;4:7.CrossRef
54.
go back to reference Zhang L, Zhang J, Yang G, Wu D, Jiang L, Wen Z, Li M. Investigating the concordance of Gene Ontology terms reveals the intra- and inter-platform reproducibility of enrichment analysis. BMC Bioinformatics. 2013;14:143.CrossRef Zhang L, Zhang J, Yang G, Wu D, Jiang L, Wen Z, Li M. Investigating the concordance of Gene Ontology terms reveals the intra- and inter-platform reproducibility of enrichment analysis. BMC Bioinformatics. 2013;14:143.CrossRef
56.
go back to reference Huson LW. Performance of some correlation coefficients when applied to zero-clustered data. J Mod Appl Stat Methods. 2007;6:530–6.CrossRef Huson LW. Performance of some correlation coefficients when applied to zero-clustered data. J Mod Appl Stat Methods. 2007;6:530–6.CrossRef
58.
go back to reference D’Haeseleer P. How does gene expression clustering work? Nat Biotech. 2005;23:1499–501.CrossRef D’Haeseleer P. How does gene expression clustering work? Nat Biotech. 2005;23:1499–501.CrossRef
59.
go back to reference Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.CrossRef Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.CrossRef
Metadata
Title
Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies
Authors
Erin Oerton
Andreas Bender
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2017
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-0838-x

Other articles of this Issue 1/2017

BMC Neurology 1/2017 Go to the issue