Skip to main content
Top
Published in: BMC Neurology 1/2017

Open Access 01-12-2017 | Research article

Monitoring training activity during gait-related balance exercise in individuals with Parkinson’s disease: a proof-of-concept-study

Authors: David Conradsson, Håkan Nero, Niklas Löfgren, Maria Hagströmer, Erika Franzén

Published in: BMC Neurology | Issue 1/2017

Login to get access

Abstract

Background

Despite the benefits of balance exercise in clinical populations, balance training programs tend to be poorly described, which in turn makes it difficult to evaluate important training components and compare between programs. However, the use of wearable sensors may have the potential to monitor certain elements of balance training. Therefore, this study aimed to investigate the feasibility of using wearable sensors to provide objective indicators of the levels and progression of training activity during gait-related balance exercise in individuals with Parkinson’s disease.

Methods

Ten individuals with Parkinson’s disease participated in 10 weeks of group training (three sessions/week) addressing highly-challenging balance exercises. The training program was designed to be progressive by gradually increasing the amount of gait-related balance exercise exercises (e.g. walking) and time spent dual-tasking throughout the intervention period. Accelerometers (Actigraph GT3X+) were used to measure volume (number of steps/session) and intensity (time spent walking >1.0 m/s) of dynamic training activity. Training activity was also expressed in relation to the participants’ total daily volume of physical activity prior to the training period (i.e. number of steps during training/the number of steps per day). Feasibility encompassed the adequacy of data sampling, the output of accelerometer data and the participants’ perception of the level of difficulty of training.

Results

Training activity data were successfully obtained in 98% of the training sessions (n = 256) and data sampling did not interfere with training. Reflecting the progressive features of this intervention, training activity increased throughout the program, and corresponded to a high level of the participants’ daily activity (28–43%). In line with the accelerometer data, a majority of the participants (n = 8) perceived the training as challenging.

Conclusions

The findings of this proof-of-concept study support the feasibility of applying wearable sensors in clinical settings to gain objective informative measures of gait-related balance exercise in individuals with Parkinson’s disease. Still, this activity monitoring approach needs to be further validated in other populations and programs including gait-related balance exercises.

Trial registration

NCT01417598, 15th August 2011.
Literature
2.
go back to reference Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, Altman DG, Barbour V, Macdonald H, Johnston M, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687.CrossRefPubMed Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, Altman DG, Barbour V, Macdonald H, Johnston M, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687.CrossRefPubMed
3.
go back to reference Thompson W, Gordon N, Pescatello L. ACSM's guidelines for exercise testing and prescription, vol. 8th ed. Philadelphia: Wolters Kluwer; 2010. Thompson W, Gordon N, Pescatello L. ACSM's guidelines for exercise testing and prescription, vol. 8th ed. Philadelphia: Wolters Kluwer; 2010.
4.
go back to reference Farlie MK, Molloy E, Keating JL, Haines TP. Clinical markers of the intensity of balance challenge: observational study of older adult responses to balance tasks. Phys Ther. 2016;96:313–23.CrossRefPubMed Farlie MK, Molloy E, Keating JL, Haines TP. Clinical markers of the intensity of balance challenge: observational study of older adult responses to balance tasks. Phys Ther. 2016;96:313–23.CrossRefPubMed
5.
go back to reference Farlie MK, Robins L, Keating JL, Molloy E, Haines TP. Intensity of challenge to the balance system is not reported in the prescription of balance exercises in randomised trials: a systematic review. J Physiother. 2013;59:227–35.CrossRefPubMed Farlie MK, Robins L, Keating JL, Molloy E, Haines TP. Intensity of challenge to the balance system is not reported in the prescription of balance exercises in randomised trials: a systematic review. J Physiother. 2013;59:227–35.CrossRefPubMed
6.
go back to reference Haas R, Maloney S, Pausenberger E, Keating JL, Sims J, Molloy E, Jolly B, Morgan P, Haines T. Clinical decision making in exercise prescription for fall prevention. Phys Ther. 2012;92:666–79.CrossRefPubMed Haas R, Maloney S, Pausenberger E, Keating JL, Sims J, Molloy E, Jolly B, Morgan P, Haines T. Clinical decision making in exercise prescription for fall prevention. Phys Ther. 2012;92:666–79.CrossRefPubMed
7.
go back to reference Lesinski M, Hortobagyi T, Muehlbauer T, Gollhofer A, Granacher U. Dose-response relationships of balance training in healthy young adults: a systematic review and meta-analysis. Sports Med. 2015;45:557–76.CrossRefPubMed Lesinski M, Hortobagyi T, Muehlbauer T, Gollhofer A, Granacher U. Dose-response relationships of balance training in healthy young adults: a systematic review and meta-analysis. Sports Med. 2015;45:557–76.CrossRefPubMed
8.
go back to reference Lesinski M, Hortobagyi T, Muehlbauer T, Gollhofer A, Granacher U. Effects of balance training on balance performance in healthy older adults: a systematic review and meta-analysis. Sports Med. 2015;45:1721–38.CrossRefPubMedPubMedCentral Lesinski M, Hortobagyi T, Muehlbauer T, Gollhofer A, Granacher U. Effects of balance training on balance performance in healthy older adults: a systematic review and meta-analysis. Sports Med. 2015;45:1721–38.CrossRefPubMedPubMedCentral
9.
go back to reference Strouwen C, Molenaar EA, Munks L, Keus SH, Bloem BR, Rochester L, Nieuwboer A. Dual tasking in Parkinson’s disease: should we train hazardous behavior? Expert Rev Neurother. 2015;15:1031–9.CrossRefPubMed Strouwen C, Molenaar EA, Munks L, Keus SH, Bloem BR, Rochester L, Nieuwboer A. Dual tasking in Parkinson’s disease: should we train hazardous behavior? Expert Rev Neurother. 2015;15:1031–9.CrossRefPubMed
10.
go back to reference Plummer P, Eskes G, Wallace S, Giuffrida C, Fraas M, Campbell G, Clifton K, Skidmore ER, American Congress of Rehabilitation Medicine Stroke Networking Group Cognition Task F. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch Phys Med Rehabil. 2013;94:2565–74. e6.CrossRefPubMed Plummer P, Eskes G, Wallace S, Giuffrida C, Fraas M, Campbell G, Clifton K, Skidmore ER, American Congress of Rehabilitation Medicine Stroke Networking Group Cognition Task F. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch Phys Med Rehabil. 2013;94:2565–74. e6.CrossRefPubMed
11.
go back to reference Wang X, Pi Y, Chen P, Liu Y, Wang R, Chan C. Cognitive motor interference for preventing falls in older adults: a systematic review and meta-analysis of randomised controlled trials. Age Ageing. 2015;44:205–12.CrossRefPubMed Wang X, Pi Y, Chen P, Liu Y, Wang R, Chan C. Cognitive motor interference for preventing falls in older adults: a systematic review and meta-analysis of randomised controlled trials. Age Ageing. 2015;44:205–12.CrossRefPubMed
12.
go back to reference Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care. 2007;10:597–603.CrossRefPubMed Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care. 2007;10:597–603.CrossRefPubMed
13.
go back to reference Matthews CE, Hagstromer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44:S68–76.CrossRefPubMedPubMedCentral Matthews CE, Hagstromer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44:S68–76.CrossRefPubMedPubMedCentral
15.
go back to reference Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, Shah L, Sackley CM, Deane KH, Wheatley K, et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst Rev. 2013;9:CD002817. Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, Shah L, Sackley CM, Deane KH, Wheatley K, et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst Rev. 2013;9:CD002817.
16.
go back to reference Schwenk M, Grewal GS, Honarvar B, Schwenk S, Mohler J, Khalsa DS, Najafi B. Interactive balance training integrating sensor-based visual feedback of movement performance: a pilot study in older adults. J Neuroeng Rehabil. 2014;11:164.CrossRefPubMedPubMedCentral Schwenk M, Grewal GS, Honarvar B, Schwenk S, Mohler J, Khalsa DS, Najafi B. Interactive balance training integrating sensor-based visual feedback of movement performance: a pilot study in older adults. J Neuroeng Rehabil. 2014;11:164.CrossRefPubMedPubMedCentral
17.
go back to reference Grewal GS, Schwenk M, Lee-Eng J, Parvaneh S, Bharara M, Menzies RA, Talal TK, Armstrong DG, Najafi B. Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial. Gerontology. 2015;61:567–74.CrossRefPubMed Grewal GS, Schwenk M, Lee-Eng J, Parvaneh S, Bharara M, Menzies RA, Talal TK, Armstrong DG, Najafi B. Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial. Gerontology. 2015;61:567–74.CrossRefPubMed
18.
go back to reference Kim SD, Allen NE, Canning CG, Fung VS. Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs. 2013;27:97–112.CrossRefPubMed Kim SD, Allen NE, Canning CG, Fung VS. Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs. 2013;27:97–112.CrossRefPubMed
19.
go back to reference Pickering RM, Grimbergen YA, Rigney U, Ashburn A, Mazibrada G, Wood B, Gray P, Kerr G, Bloem BR. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord. 2007;22:1892–900.CrossRefPubMed Pickering RM, Grimbergen YA, Rigney U, Ashburn A, Mazibrada G, Wood B, Gray P, Kerr G, Bloem BR. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord. 2007;22:1892–900.CrossRefPubMed
20.
go back to reference Cavanaugh JT, Ellis TD, Earhart GM, Ford MP, Foreman KB, Dibble LE. Capturing ambulatory activity decline in Parkinson’s disease. J Neurol Phys Ther. 2012;36:51–7.CrossRefPubMedPubMedCentral Cavanaugh JT, Ellis TD, Earhart GM, Ford MP, Foreman KB, Dibble LE. Capturing ambulatory activity decline in Parkinson’s disease. J Neurol Phys Ther. 2012;36:51–7.CrossRefPubMedPubMedCentral
21.
go back to reference Canning CG, Paul SS, Nieuwboer A. Prevention of falls in Parkinson’s disease: a review of fall risk factors and the role of physical interventions. Neurodegener Dis Manag. 2014;4:203–21.CrossRefPubMed Canning CG, Paul SS, Nieuwboer A. Prevention of falls in Parkinson’s disease: a review of fall risk factors and the role of physical interventions. Neurodegener Dis Manag. 2014;4:203–21.CrossRefPubMed
22.
go back to reference Allen NE, Sherrington C, Paul SS, Canning CG. Balance and falls in Parkinson’s disease: a meta-analysis of the effect of exercise and motor training. Mov Disord. 2011;26:1605–15.CrossRefPubMed Allen NE, Sherrington C, Paul SS, Canning CG. Balance and falls in Parkinson’s disease: a meta-analysis of the effect of exercise and motor training. Mov Disord. 2011;26:1605–15.CrossRefPubMed
23.
go back to reference Heinzel S, Maechtel M, Hasmann SE, Hobert MA, Heger T, Berg D, Maetzler W. Motor dual-tasking deficits predict falls in Parkinson’s disease: A prospective study. Parkinsonism Relat Disord. 2016;26:73–7.CrossRefPubMed Heinzel S, Maechtel M, Hasmann SE, Hobert MA, Heger T, Berg D, Maetzler W. Motor dual-tasking deficits predict falls in Parkinson’s disease: A prospective study. Parkinsonism Relat Disord. 2016;26:73–7.CrossRefPubMed
24.
go back to reference Bloem BR, Grimbergen YA, van Dijk JG, Munneke M. The “posture second” strategy: a review of wrong priorities in Parkinson’s disease. J Neurol Sci. 2006;248:196–204.CrossRefPubMed Bloem BR, Grimbergen YA, van Dijk JG, Munneke M. The “posture second” strategy: a review of wrong priorities in Parkinson’s disease. J Neurol Sci. 2006;248:196–204.CrossRefPubMed
25.
go back to reference Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Park Dis. 2012;2012:918719. Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Park Dis. 2012;2012:918719.
26.
go back to reference Canning CG, Ada L, Woodhouse E. Multiple-task walking training in people with mild to moderate Parkinson’s disease: a pilot study. Clin Rehabil. 2008;22:226–33.CrossRefPubMed Canning CG, Ada L, Woodhouse E. Multiple-task walking training in people with mild to moderate Parkinson’s disease: a pilot study. Clin Rehabil. 2008;22:226–33.CrossRefPubMed
27.
go back to reference Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait Posture. 2010;31:229–33.CrossRefPubMed Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait Posture. 2010;31:229–33.CrossRefPubMed
28.
go back to reference Conradsson D, Löfgren N, Nero H, Hagströmer M, Ståhle A, Lökk J, Franzen E. The Effects of Highly Challenging Balance Training in Elderly With Parkinson’s Disease: A Randomized Controlled Trial. Neuroreh Neur Re. 2015. Conradsson D, Löfgren N, Nero H, Hagströmer M, Ståhle A, Lökk J, Franzen E. The Effects of Highly Challenging Balance Training in Elderly With Parkinson’s Disease: A Randomized Controlled Trial. Neuroreh Neur Re. 2015.
29.
go back to reference Keus S, Munneke M, Graziano M, Paltamaa J, Pelosin E, Domingos J, Bruhlmann S, Ramaswamy B, Prins J, Struiksma C, et al. European physiotherapy guideline for Parkinson’s disease: development & implementation. Mov Disord. 2014;29:S537. Keus S, Munneke M, Graziano M, Paltamaa J, Pelosin E, Domingos J, Bruhlmann S, Ramaswamy B, Prins J, Struiksma C, et al. European physiotherapy guideline for Parkinson’s disease: development & implementation. Mov Disord. 2014;29:S537.
30.
go back to reference Conradsson D, Löfgren N, Ståhle A, Hagströmer M, Franzén E. A novel conceptual framework for balance training in Parkinson’s disease-study protocol for a randomised controlled trial. BMC Neurol. 2012;12:111.CrossRefPubMedPubMedCentral Conradsson D, Löfgren N, Ståhle A, Hagströmer M, Franzén E. A novel conceptual framework for balance training in Parkinson’s disease-study protocol for a randomised controlled trial. BMC Neurol. 2012;12:111.CrossRefPubMedPubMedCentral
31.
go back to reference Conradsson D, Löfgren N, Ståhle A, Franzen E. Is highly challenging and progressive balance training feasible in older adults with Parkinson’s disease? Arch Phys Med Rehabil. 2014;95:1000–3.CrossRefPubMed Conradsson D, Löfgren N, Ståhle A, Franzen E. Is highly challenging and progressive balance training feasible in older adults with Parkinson’s disease? Arch Phys Med Rehabil. 2014;95:1000–3.CrossRefPubMed
32.
go back to reference Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.CrossRefPubMedPubMedCentral Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.CrossRefPubMedPubMedCentral
33.
34.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed
35.
go back to reference Kelly LA, McMillan DG, Anderson A, Fippinger M, Fillerup G, Rider J. Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Med Phys. 2013;13:5.CrossRefPubMedPubMedCentral Kelly LA, McMillan DG, Anderson A, Fippinger M, Fillerup G, Rider J. Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Med Phys. 2013;13:5.CrossRefPubMedPubMedCentral
37.
38.
go back to reference Santos-Lozano A, Marin PJ, Torres-Luque G, Ruiz JR, Lucia A, Garatachea N. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34:787–90.CrossRefPubMed Santos-Lozano A, Marin PJ, Torres-Luque G, Ruiz JR, Lucia A, Garatachea N. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34:787–90.CrossRefPubMed
39.
go back to reference Benka Wallen M, Franzen E, Nero H, Hagströmer M. Levels and patterns of physical activity and sedentary behavior in elderly people with mild to moderate Parkinson disease. Phys Ther. 2015;95:1135–41.CrossRefPubMed Benka Wallen M, Franzen E, Nero H, Hagströmer M. Levels and patterns of physical activity and sedentary behavior in elderly people with mild to moderate Parkinson disease. Phys Ther. 2015;95:1135–41.CrossRefPubMed
40.
go back to reference Wallen MB, Nero H, Franzen E, Hagströmer M. Comparison of two accelerometer filter settings in individuals with Parkinson’s disease. Physiol Meas. 2014;35:2287–96.CrossRefPubMed Wallen MB, Nero H, Franzen E, Hagströmer M. Comparison of two accelerometer filter settings in individuals with Parkinson’s disease. Physiol Meas. 2014;35:2287–96.CrossRefPubMed
41.
go back to reference Nero H, Benka Wallén M, Franzén E, Ståhle A, Hagströmer M. Accelerometer Cut Points for Physical Activity Assessment of Older Adults with Parkinson’s Disease. PLoS One. 2015;10(9):e0135899. Nero H, Benka Wallén M, Franzén E, Ståhle A, Hagströmer M. Accelerometer Cut Points for Physical Activity Assessment of Older Adults with Parkinson’s Disease. PLoS One. 2015;10(9):e0135899.
42.
go back to reference Aguilar-Farias N, Brown WJ, Peeters GM. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J Sci Med Sport. 2014;17:293–9.CrossRefPubMed Aguilar-Farias N, Brown WJ, Peeters GM. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J Sci Med Sport. 2014;17:293–9.CrossRefPubMed
43.
go back to reference van Nimwegen M, Speelman AD, Overeem S, van de Warrenburg BP, Smulders K, Dontje ML, Borm GF, Backx FJ, Bloem BR, Munneke M, et al. Promotion of physical activity and fitness in sedentary patients with Parkinson’s disease: randomised controlled trial. BMJ. 2013;346:f576.CrossRefPubMedPubMedCentral van Nimwegen M, Speelman AD, Overeem S, van de Warrenburg BP, Smulders K, Dontje ML, Borm GF, Backx FJ, Bloem BR, Munneke M, et al. Promotion of physical activity and fitness in sedentary patients with Parkinson’s disease: randomised controlled trial. BMJ. 2013;346:f576.CrossRefPubMedPubMedCentral
44.
go back to reference Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35 Suppl 2:ii7–ii11.PubMed Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35 Suppl 2:ii7–ii11.PubMed
45.
go back to reference Mancini M, El-Gohary M, Pearson S, McNames J, Schlueter H, Nutt JG, King LA, Horak FB. Continuous monitoring of turning in Parkinson’s disease: Rehabilitation potential. NeuroRehabilitation. 2015;37:3–10.CrossRefPubMedPubMedCentral Mancini M, El-Gohary M, Pearson S, McNames J, Schlueter H, Nutt JG, King LA, Horak FB. Continuous monitoring of turning in Parkinson’s disease: Rehabilitation potential. NeuroRehabilitation. 2015;37:3–10.CrossRefPubMedPubMedCentral
46.
47.
go back to reference Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35:715–28.CrossRefPubMed Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35:715–28.CrossRefPubMed
48.
go back to reference Nieuwboer A, Rochester L, Muncks L, Swinnen SP. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15 Suppl 3:S53–8.CrossRefPubMed Nieuwboer A, Rochester L, Muncks L, Swinnen SP. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15 Suppl 3:S53–8.CrossRefPubMed
49.
go back to reference Yogev-Seligmann G, Giladi N, Brozgol M, Hausdorff JM. A training program to improve gait while dual tasking in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2012;93:176–81.CrossRefPubMed Yogev-Seligmann G, Giladi N, Brozgol M, Hausdorff JM. A training program to improve gait while dual tasking in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2012;93:176–81.CrossRefPubMed
50.
go back to reference Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci. 2011;66:234–40.CrossRefPubMed Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci. 2011;66:234–40.CrossRefPubMed
Metadata
Title
Monitoring training activity during gait-related balance exercise in individuals with Parkinson’s disease: a proof-of-concept-study
Authors
David Conradsson
Håkan Nero
Niklas Löfgren
Maria Hagströmer
Erika Franzén
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2017
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-0804-7

Other articles of this Issue 1/2017

BMC Neurology 1/2017 Go to the issue