Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Acute Kidney Injury | Case report

Non-urate transporter 1, non-glucose transporter member 9-related renal hypouricemia and acute renal failure accompanied by hyperbilirubinemia after anaerobic exercise: a case report

Authors: Yoshitaka Furuto, Mariko Kawamura, Akio Namikawa, Hiroko Takahashi, Yuko Shibuya, Takayasu Mori, Eisei Sohara

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Renal hypouricemia (RHUC) is an inherited heterogenous disorder caused by faulty urate reabsorption transporters in the renal proximal tubular cells. Anaerobic exercise may induce acute kidney injury in individuals with RHUC that is not caused by exertional rhabdomyolysis; it is called acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise (ALPE).
RHUC is the most important risk factor for ALPE. However, the mechanism of onset of ALPE in patients with RHUC has not been elucidated. The currently known genes responsible for RHUC are SLC22A12 and SLC2A9.

Case presentation

A 37-year-old man presented with loin pain after exercising. Despite having a healthy constitution from birth, biochemical examination revealed hypouricemia, with a uric acid (UA) level of < 1 mg/dL consistently at every health check. We detected acute kidney injury, with a creatinine (Cr) level of 4.1 mg/dL, and elevated bilirubin; hence, the patient was hospitalized. Computed tomography revealed no renal calculi, but bilateral renal swelling was noted. Magnetic resonance imaging detected cuneiform lesions, indicating bilateral renal ischemia. Fractional excretion values of sodium and UA were 0.61 and 50.5%, respectively. Urinary microscopy showed lack of tubular injury. The patient’s older sister had hypouricemia. The patient was diagnosed with ALPE. Treatment with bed rest, fluid replacement, and nutrition therapy improved renal function and bilirubin levels, and the patient was discharged on day 5. Approximately 1 month after onset of ALPE, his Cr, UA, and TB levels were 0.98, 0.8, and 0.9 mg/dL, respectively. We suspected familial RHUC due to the hypouricemia and family history and performed genetic testing but did not find the typical genes responsible for RHUC. A full genetic analysis was opposed by the family.

Conclusions

To the best of our knowledge, this is the first report of ALPE with hyperbilirubinemia. Bilirubin levels may become elevated as a result of heme oxygenase-1 activation, occurring in exercise-induced acute kidney injury in patients with RHUC; this phenomenon suggests renal ischemia-reperfusion injury. A new causative gene coding for a urate transporter may exist, and its identification would be useful to clarify the urate transport mechanism.
Literature
1.
go back to reference Nakayama A, Matsuo H, Ohtahara A, Ogino K, Hakoda M, Hamada T, et al. Clinical practice guideline for renal hypouricemia (1st edition). Hum Cell. 2019;32:83–7.PubMedPubMedCentralCrossRef Nakayama A, Matsuo H, Ohtahara A, Ogino K, Hakoda M, Hamada T, et al. Clinical practice guideline for renal hypouricemia (1st edition). Hum Cell. 2019;32:83–7.PubMedPubMedCentralCrossRef
2.
go back to reference Greene ML, Marcus R, Aurbach GD, Kazam ES, Seegmiller JE. Hypouricemia due to isolated renal tubular defect: Dalmation dog mutation in man. Am J Med. 1972;53:361–7.PubMedCrossRef Greene ML, Marcus R, Aurbach GD, Kazam ES, Seegmiller JE. Hypouricemia due to isolated renal tubular defect: Dalmation dog mutation in man. Am J Med. 1972;53:361–7.PubMedCrossRef
3.
go back to reference Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–52.PubMedCrossRef Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–52.PubMedCrossRef
4.
go back to reference Bahat H, Dinour D, Ganon L, Feldman L, Holtzman EJ, Goldman M. Non-urate transporter 1-related renal hypouricemia and acute renal failure in an Israeli-Arab family. Pediatr Nephrol. 2009;24:999–1003.PubMedCrossRef Bahat H, Dinour D, Ganon L, Feldman L, Holtzman EJ, Goldman M. Non-urate transporter 1-related renal hypouricemia and acute renal failure in an Israeli-Arab family. Pediatr Nephrol. 2009;24:999–1003.PubMedCrossRef
5.
go back to reference Dinour D, Gray NK, Campbell S, Gray NK, Campbell S, Shu X, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21:64–72.PubMedPubMedCentralCrossRef Dinour D, Gray NK, Campbell S, Gray NK, Campbell S, Shu X, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21:64–72.PubMedPubMedCentralCrossRef
6.
go back to reference Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83:744–51.PubMedPubMedCentralCrossRef Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83:744–51.PubMedPubMedCentralCrossRef
7.
go back to reference Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1(SLC2A9) in humans. J Biol Chem. 2008;283:26834–8.PubMedCrossRef Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1(SLC2A9) in humans. J Biol Chem. 2008;283:26834–8.PubMedCrossRef
8.
go back to reference Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardina and Chianti cohorts. PLoS Genet. 2007;3:e194.PubMedPubMedCentralCrossRef Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardina and Chianti cohorts. PLoS Genet. 2007;3:e194.PubMedPubMedCentralCrossRef
9.
go back to reference Stiburkova B, Ichida K, Sebesta I. Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol Genet Metab. 2011;102:430–5.PubMedCrossRef Stiburkova B, Ichida K, Sebesta I. Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol Genet Metab. 2011;102:430–5.PubMedCrossRef
10.
go back to reference Ishikawa I. Exercise-induced acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise. Tokyo: Springer Japan; 2007. p. 1–108. Ishikawa I. Exercise-induced acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise. Tokyo: Springer Japan; 2007. p. 1–108.
11.
go back to reference Mori T, Hosomichi K, Chiga M, Mandai S, Nakaoka H, Sohara E, et al. Comprehensive genetic testing approach for major inherited kidney disease, using next-generation sequencing with a custom panel. Clin Exp Nephrol. 2016;21:63–75.PubMedCrossRef Mori T, Hosomichi K, Chiga M, Mandai S, Nakaoka H, Sohara E, et al. Comprehensive genetic testing approach for major inherited kidney disease, using next-generation sequencing with a custom panel. Clin Exp Nephrol. 2016;21:63–75.PubMedCrossRef
12.
go back to reference Ohtsuka Y, Zaitsu M, Ichida K, Isomura N, Tsuji K, Sato T, et al. Human uric acid transporter 1 gene analysis in familial renal hypo-uricemia associated with exercise-induced acute renal failure. Pediatr Int. 2007;49:235–7.PubMedCrossRef Ohtsuka Y, Zaitsu M, Ichida K, Isomura N, Tsuji K, Sato T, et al. Human uric acid transporter 1 gene analysis in familial renal hypo-uricemia associated with exercise-induced acute renal failure. Pediatr Int. 2007;49:235–7.PubMedCrossRef
13.
go back to reference Kaito H, Ishimori S, Nozu K, Shima Y, Nakanishi K, Yoshikawa N, et al. Molecular background of urate transporter genes in patients with exercise-induced acute kidney injury. Am J Nephrol. 2013;38:316–20.PubMedCrossRef Kaito H, Ishimori S, Nozu K, Shima Y, Nakanishi K, Yoshikawa N, et al. Molecular background of urate transporter genes in patients with exercise-induced acute kidney injury. Am J Nephrol. 2013;38:316–20.PubMedCrossRef
14.
go back to reference Wakasugi M, Kazama JJ, Narita I, Konta T, Fujimoto S, Iseki K, et al. Association between hypouricemia and reduced kidney function: a cross-sectional population-based study in Japan. Am J Nephrol. 2015;41:138–46.PubMedCrossRef Wakasugi M, Kazama JJ, Narita I, Konta T, Fujimoto S, Iseki K, et al. Association between hypouricemia and reduced kidney function: a cross-sectional population-based study in Japan. Am J Nephrol. 2015;41:138–46.PubMedCrossRef
15.
go back to reference Son CN, Kim JM, Kim SH, Cho SK, Choi CB, Sung YK, et al. Prevalence and possible causes of hypouricemia at a tertiary care hospital. Korean J Intern Med. 2016;31(5):971–6.PubMedPubMedCentralCrossRef Son CN, Kim JM, Kim SH, Cho SK, Choi CB, Sung YK, et al. Prevalence and possible causes of hypouricemia at a tertiary care hospital. Korean J Intern Med. 2016;31(5):971–6.PubMedPubMedCentralCrossRef
16.
go back to reference Kuwabara M, Niwa K, Ohtahara A, Hamada T, Miyazaki S, Mizuta E, et al. Prevalence and complications of hypouricemia in a general population: a large-scale cross-sectional study in Japan. PLoS One. 2017;12(4):e0176055.PubMedPubMedCentralCrossRef Kuwabara M, Niwa K, Ohtahara A, Hamada T, Miyazaki S, Mizuta E, et al. Prevalence and complications of hypouricemia in a general population: a large-scale cross-sectional study in Japan. PLoS One. 2017;12(4):e0176055.PubMedPubMedCentralCrossRef
17.
go back to reference Sperling O. Renal hypouricemia: classification, tubular defect and clinical consequences. Contrib Nephrol. 1992;100:1–14.PubMedCrossRef Sperling O. Renal hypouricemia: classification, tubular defect and clinical consequences. Contrib Nephrol. 1992;100:1–14.PubMedCrossRef
18.
go back to reference Ishikawa I. Acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise in patients with or without renal hypouricemia. Nephron. 2002;91:559–70.PubMedCrossRef Ishikawa I. Acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise in patients with or without renal hypouricemia. Nephron. 2002;91:559–70.PubMedCrossRef
19.
go back to reference Ishikawa I, Sakurai Y, Masuzaki S, Sugishita N, Shinoda A, Shikura N. Exercise-induced acute renal failure in 3 patients with renal hypouricemia. Nippon Jinzo Gakkai Shi. 1990;32:923–8.PubMed Ishikawa I, Sakurai Y, Masuzaki S, Sugishita N, Shinoda A, Shikura N. Exercise-induced acute renal failure in 3 patients with renal hypouricemia. Nippon Jinzo Gakkai Shi. 1990;32:923–8.PubMed
20.
go back to reference Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet. 2008;74:243–51.PubMedCrossRef Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet. 2008;74:243–51.PubMedCrossRef
21.
go back to reference Ishikawa I, Saito Y, Shinoda A, Onouchi Z. Evidence for patchy renal vasoconstriction in man:observation by CT scan. Nephron. 1981;27:31–4.PubMedCrossRef Ishikawa I, Saito Y, Shinoda A, Onouchi Z. Evidence for patchy renal vasoconstriction in man:observation by CT scan. Nephron. 1981;27:31–4.PubMedCrossRef
22.
go back to reference Murakami T, Kawakami H, Fukuda M, Furukawa S. Patients with renal hypouricemia are prone to develop acute renal failure-why? Clin Nephrol. 1995;43:207–8.PubMed Murakami T, Kawakami H, Fukuda M, Furukawa S. Patients with renal hypouricemia are prone to develop acute renal failure-why? Clin Nephrol. 1995;43:207–8.PubMed
23.
go back to reference Kaneko K, Taniguchi N, Tanabe Y, Nakano T, Hasui M, Nozu K. Oxidative imbalance in idiopathic renal hypouricemia. Pediatr Nephrol. 2009;24:869–71.PubMedCrossRef Kaneko K, Taniguchi N, Tanabe Y, Nakano T, Hasui M, Nozu K. Oxidative imbalance in idiopathic renal hypouricemia. Pediatr Nephrol. 2009;24:869–71.PubMedCrossRef
24.
go back to reference Ohta T, Sakano T, Igarashi T, Itami N, Ogawa T, ARF Associated with Renal Hypouricemia Research Group. Exercise-induced acute renal failure associated with renal hypouricaemia: results of a questionnaire-based survey in Japan. Nephrol Dial Transplant. 2004;19:1447–53.PubMedCrossRef Ohta T, Sakano T, Igarashi T, Itami N, Ogawa T, ARF Associated with Renal Hypouricemia Research Group. Exercise-induced acute renal failure associated with renal hypouricaemia: results of a questionnaire-based survey in Japan. Nephrol Dial Transplant. 2004;19:1447–53.PubMedCrossRef
25.
go back to reference Yeun JY, Hasbargen JA. Renal hypouricemia: prevention of exercise-induced acute renal failure and a review of the literature. Am J Kidney Dis. 1995;25:937–46.PubMedCrossRef Yeun JY, Hasbargen JA. Renal hypouricemia: prevention of exercise-induced acute renal failure and a review of the literature. Am J Kidney Dis. 1995;25:937–46.PubMedCrossRef
26.
go back to reference Erley CM, Hirschberg RR, Hoefer W, Schaefer K. Acute renal failure due to uric acid nephropathy in a patient with renal hypouricemia. Klin Wochenschr. 1989;67:308–12.PubMedCrossRef Erley CM, Hirschberg RR, Hoefer W, Schaefer K. Acute renal failure due to uric acid nephropathy in a patient with renal hypouricemia. Klin Wochenschr. 1989;67:308–12.PubMedCrossRef
27.
go back to reference Jeannin G, Chiarelli N, Gaggiotti M, Ritelli M, Maiorca P, Quinzani S, et al. Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity. BMC Med Genet. 2014;15:3.PubMedPubMedCentralCrossRef Jeannin G, Chiarelli N, Gaggiotti M, Ritelli M, Maiorca P, Quinzani S, et al. Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity. BMC Med Genet. 2014;15:3.PubMedPubMedCentralCrossRef
28.
go back to reference Kim SH, Han MC, Han JS, Kim S, Lee JS. Exercise-induced acute renal failure and patchy renal vasoconstriction: CT and MR findings. J Comput Assist Tomogr. 1991;15:985–8.PubMedCrossRef Kim SH, Han MC, Han JS, Kim S, Lee JS. Exercise-induced acute renal failure and patchy renal vasoconstriction: CT and MR findings. J Comput Assist Tomogr. 1991;15:985–8.PubMedCrossRef
29.
go back to reference Ohta K, Yokoyama T, Shimizu M, Mizuno K, Sakazume S, Fujiki T, et al. Diffusion-weighted MRI of exercise-induced acute renal failure (ALPE). Pediatr Nephrol. 2011;26:1321–4.PubMedCrossRef Ohta K, Yokoyama T, Shimizu M, Mizuno K, Sakazume S, Fujiki T, et al. Diffusion-weighted MRI of exercise-induced acute renal failure (ALPE). Pediatr Nephrol. 2011;26:1321–4.PubMedCrossRef
30.
go back to reference Oh KJ, Lee HH, Lee JS, Chung W, Lee JH, Kim SH, Lee JS. Reversible renal vasoconstriction in a patient with acute renal failure after exercise. Clin Nephrol. 2006;66:297–301.PubMedCrossRef Oh KJ, Lee HH, Lee JS, Chung W, Lee JH, Kim SH, Lee JS. Reversible renal vasoconstriction in a patient with acute renal failure after exercise. Clin Nephrol. 2006;66:297–301.PubMedCrossRef
31.
32.
go back to reference Itoh S, Okada H, Kuboi T, Kusaka T. Phototherapy for neonatal hyperbilirubinemia. Pediatr Int. 2017;59:959–66.PubMedCrossRef Itoh S, Okada H, Kuboi T, Kusaka T. Phototherapy for neonatal hyperbilirubinemia. Pediatr Int. 2017;59:959–66.PubMedCrossRef
33.
go back to reference Adin CA, Croker BP, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol. 2005;284:778–84.CrossRef Adin CA, Croker BP, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol. 2005;284:778–84.CrossRef
34.
go back to reference Stec DE, Storm MV, Pruett BE, Gousset MU. Antihypertensive actions of moderate hyperbilirubinemia: role of superoxide inhibition. Am J Hypertens. 2013;26:918–23.PubMedPubMedCentralCrossRef Stec DE, Storm MV, Pruett BE, Gousset MU. Antihypertensive actions of moderate hyperbilirubinemia: role of superoxide inhibition. Am J Hypertens. 2013;26:918–23.PubMedPubMedCentralCrossRef
35.
go back to reference Yamaguchi T, Terakado M, Horio F, Aoki K, Tanaka M, Nakajima H. Role of bilirubin as an antioxidant in an ischemia-reperfusion of rat liver and induction of heme oxygenase. Biochem Biophys Res Commun. 1996;223:129–35.PubMedCrossRef Yamaguchi T, Terakado M, Horio F, Aoki K, Tanaka M, Nakajima H. Role of bilirubin as an antioxidant in an ischemia-reperfusion of rat liver and induction of heme oxygenase. Biochem Biophys Res Commun. 1996;223:129–35.PubMedCrossRef
36.
go back to reference Basiglio CL, Arriaga SM, Pelusa F, Almará AM, Kapitulnik J, Mottino AD. Complement activation and disease: protective effects of hyperbilirubinemia. Clin Sci. 2010;118:99–113.CrossRef Basiglio CL, Arriaga SM, Pelusa F, Almará AM, Kapitulnik J, Mottino AD. Complement activation and disease: protective effects of hyperbilirubinemia. Clin Sci. 2010;118:99–113.CrossRef
37.
go back to reference Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical application. FASEB J. 1988;2:2557–68.PubMedCrossRef Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical application. FASEB J. 1988;2:2557–68.PubMedCrossRef
38.
go back to reference Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–6.PubMedCrossRef Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–6.PubMedCrossRef
39.
go back to reference Sundararaghavan VL, Binepal S, Stec DE, Sindhwani P, Hinds TD Jr. Bililubin, a new therapeutic for kidney transplant? Transplant Rev (Orlando). 2018;32:232–40.CrossRef Sundararaghavan VL, Binepal S, Stec DE, Sindhwani P, Hinds TD Jr. Bililubin, a new therapeutic for kidney transplant? Transplant Rev (Orlando). 2018;32:232–40.CrossRef
40.
go back to reference Boon AC, Bulmer AC, Coombes JS, Fassett RG. Circulating bilirubin and defense against kidney disease and cardiovascular mortality: mechanisms contributing to protection in clinical investigations. Am J Physiol Renal Physiol. 2014;307:F123–36.PubMedCrossRef Boon AC, Bulmer AC, Coombes JS, Fassett RG. Circulating bilirubin and defense against kidney disease and cardiovascular mortality: mechanisms contributing to protection in clinical investigations. Am J Physiol Renal Physiol. 2014;307:F123–36.PubMedCrossRef
41.
go back to reference Oh SW, Lee ES, Kim S, Na KY, Chae DW, Kim S, et al. Bilirubin attenuates the renal tubular injury by inhibition of oxidative stress and apoptosis. BMC Nephrol. 2013;14:105.PubMedPubMedCentralCrossRef Oh SW, Lee ES, Kim S, Na KY, Chae DW, Kim S, et al. Bilirubin attenuates the renal tubular injury by inhibition of oxidative stress and apoptosis. BMC Nephrol. 2013;14:105.PubMedPubMedCentralCrossRef
42.
go back to reference LeBlanc RM, Navar LG, Botros FT. Bilirubin exerts renoprotective effects in angiotensin II-hypertension. Am J Med Sci. 2010;340:144–6.PubMedCrossRef LeBlanc RM, Navar LG, Botros FT. Bilirubin exerts renoprotective effects in angiotensin II-hypertension. Am J Med Sci. 2010;340:144–6.PubMedCrossRef
43.
go back to reference Lee JP, Kim DH, Yang SH, Hwang JH, An JN, Min SI, et al. Serum bilirubin affects graft outcomes through UDP-glucuronosyltransferase sequence variation in kidney transplantation. PLoS One. 2014;9:e93633.PubMedPubMedCentralCrossRef Lee JP, Kim DH, Yang SH, Hwang JH, An JN, Min SI, et al. Serum bilirubin affects graft outcomes through UDP-glucuronosyltransferase sequence variation in kidney transplantation. PLoS One. 2014;9:e93633.PubMedPubMedCentralCrossRef
44.
go back to reference Riphagen IJ, Deetman PE, Bakker SJ, Navis G, Cooper ME, Lewis JB, et al. Bilirubin and progression of nephropathy in type 2 diabetes: a post hoc analysis of RENAAL with independent replication in IDNT. Diabetes. 2014;63:2845–53.PubMedCrossRef Riphagen IJ, Deetman PE, Bakker SJ, Navis G, Cooper ME, Lewis JB, et al. Bilirubin and progression of nephropathy in type 2 diabetes: a post hoc analysis of RENAAL with independent replication in IDNT. Diabetes. 2014;63:2845–53.PubMedCrossRef
45.
go back to reference Chin HJ, Cho HJ, Lee TW, Na KY, Oh KH, Joo KW, et al. The mildly elevated serum bilirubin level is negatively associated with the incidence of end stage renal disease in patients with IgA nephropathy. J Korean Med Sci. 2009;24:S22–9.PubMedPubMedCentralCrossRef Chin HJ, Cho HJ, Lee TW, Na KY, Oh KH, Joo KW, et al. The mildly elevated serum bilirubin level is negatively associated with the incidence of end stage renal disease in patients with IgA nephropathy. J Korean Med Sci. 2009;24:S22–9.PubMedPubMedCentralCrossRef
46.
go back to reference Park S, Kim DH, Hwang JH, Kim Y-C, Kim JH, Lim CS, et al. Elevated bilirubin levels are associated with a better renal prognosis and ameliorate kidney fibrosis. PLoS One. 2017;12:e0172434.PubMedPubMedCentralCrossRef Park S, Kim DH, Hwang JH, Kim Y-C, Kim JH, Lim CS, et al. Elevated bilirubin levels are associated with a better renal prognosis and ameliorate kidney fibrosis. PLoS One. 2017;12:e0172434.PubMedPubMedCentralCrossRef
47.
go back to reference Tanaka M, Fukui M, Okada H, Senmaru T, Asano M, Akabame S, et al. Low serum bilirubin concentration is a predictor of chronic kidney disease. Atherosclerosis. 2014;234:421–5.PubMedCrossRef Tanaka M, Fukui M, Okada H, Senmaru T, Asano M, Akabame S, et al. Low serum bilirubin concentration is a predictor of chronic kidney disease. Atherosclerosis. 2014;234:421–5.PubMedCrossRef
48.
go back to reference Vera T, Stec DE. Moderate hyperbilirubinemia improves renal hemodynamics in ANG II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;299:1044–9.CrossRef Vera T, Stec DE. Moderate hyperbilirubinemia improves renal hemodynamics in ANG II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;299:1044–9.CrossRef
49.
go back to reference Maines MD, Mayer RD, Ewing JF, McCoubrey WK Jr. Induction of kidney Heme Oxygenase-1 (HSP-32) mRNA and protein by ischemia/ reperfusion: possible role of heme as both promotor of tissue damage and regulator of HSP32. J Pharmacol Exp Ther. 1993;264:457–62.PubMed Maines MD, Mayer RD, Ewing JF, McCoubrey WK Jr. Induction of kidney Heme Oxygenase-1 (HSP-32) mRNA and protein by ischemia/ reperfusion: possible role of heme as both promotor of tissue damage and regulator of HSP32. J Pharmacol Exp Ther. 1993;264:457–62.PubMed
50.
go back to reference Raju VS, Maines MD. Renal ischemia/ reperfusion up/regulates heme oxygenase-1 (HSP-32) expression and increases cGMP in rat heart. J Pharmacol Exp Ther. 1996;277:1814–22.PubMed Raju VS, Maines MD. Renal ischemia/ reperfusion up/regulates heme oxygenase-1 (HSP-32) expression and increases cGMP in rat heart. J Pharmacol Exp Ther. 1996;277:1814–22.PubMed
51.
go back to reference Kluth DC, Hughes J. Hemeoxygenase-1 and renal ischaemia-reperfusion injury. Nephron Exp Nephrol. 2010;115:e33–7.PubMedCrossRef Kluth DC, Hughes J. Hemeoxygenase-1 and renal ischaemia-reperfusion injury. Nephron Exp Nephrol. 2010;115:e33–7.PubMedCrossRef
52.
go back to reference Keyse SM, Tyrrell RM. Heme Oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenate. Proc Natl Acad Sci U S A. 1989;86:99–103.PubMedPubMedCentralCrossRef Keyse SM, Tyrrell RM. Heme Oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenate. Proc Natl Acad Sci U S A. 1989;86:99–103.PubMedPubMedCentralCrossRef
53.
go back to reference Takahashi T, Morita K, Akagi R, Sassa S. Protective role of heme oxygenase-1 in renal ischemia. Antioxid Redox Signal. 2004;6:867–77.PubMed Takahashi T, Morita K, Akagi R, Sassa S. Protective role of heme oxygenase-1 in renal ischemia. Antioxid Redox Signal. 2004;6:867–77.PubMed
54.
go back to reference Shimizu H, Takahashi T, Suzuki T, Yamasaki A, Fujiwara T, Odaka Y, et al. Protective effect of heme oxygenase induction in ischemic acute renal failure. Crit Care Med. 2000;28:809–17.PubMedCrossRef Shimizu H, Takahashi T, Suzuki T, Yamasaki A, Fujiwara T, Odaka Y, et al. Protective effect of heme oxygenase induction in ischemic acute renal failure. Crit Care Med. 2000;28:809–17.PubMedCrossRef
55.
go back to reference Toda N, Takahashi T, Mizobuchi S, Fujii H, Nakahira K, Takahashi S, et al. Tin chloride pretreatment prevents renal injury in rats with ischemic acute renal failure. Crit Care Med. 2002;30:1512–22.PubMedCrossRef Toda N, Takahashi T, Mizobuchi S, Fujii H, Nakahira K, Takahashi S, et al. Tin chloride pretreatment prevents renal injury in rats with ischemic acute renal failure. Crit Care Med. 2002;30:1512–22.PubMedCrossRef
56.
go back to reference Nezu M, Souma T, Yu L, Suzuki T, Saigusa D, Ito S, et al. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int. 2017;91:387–401.CrossRefPubMed Nezu M, Souma T, Yu L, Suzuki T, Saigusa D, Ito S, et al. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int. 2017;91:387–401.CrossRefPubMed
57.
go back to reference Tamura Y, Kubo E, Shima T, Ueda S, Yano H, Arai S, Kato H, Fujimori S, Uchda S, Hosoyamada M, Kaneko K, Ichida K. A case of renal hypouricemia pointed out by acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise. Gout Nucleic Acid Metab. 2013;37:48–9.CrossRef Tamura Y, Kubo E, Shima T, Ueda S, Yano H, Arai S, Kato H, Fujimori S, Uchda S, Hosoyamada M, Kaneko K, Ichida K. A case of renal hypouricemia pointed out by acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise. Gout Nucleic Acid Metab. 2013;37:48–9.CrossRef
58.
go back to reference Tian S, Li J, Li R, Liu Z, Dong W. Decreased serum bilirubin levels and increased uric acid levels are associated with ulcerative colitis. Med Sci Monit. 2018;24:6298–304.PubMedPubMedCentralCrossRef Tian S, Li J, Li R, Liu Z, Dong W. Decreased serum bilirubin levels and increased uric acid levels are associated with ulcerative colitis. Med Sci Monit. 2018;24:6298–304.PubMedPubMedCentralCrossRef
59.
go back to reference Yamaguchi T, Shioji I, Sugimoto A, Komoda Y, Nakajima H. Chemical structure of a new family of bile pigments from human urine. J Biochem. 1994;116:298–303.PubMedCrossRef Yamaguchi T, Shioji I, Sugimoto A, Komoda Y, Nakajima H. Chemical structure of a new family of bile pigments from human urine. J Biochem. 1994;116:298–303.PubMedCrossRef
60.
go back to reference Shima Y, Yokoyama T, Shimizu M, Mizuno K, Sakazume S, Fujiki T, et al. Recurrent EIARF and PRES with severe renal hypouricemia by compound heterozygous SLC2A9 mutation. Pediatrics. 2011;127:e1621–5.PubMedCrossRef Shima Y, Yokoyama T, Shimizu M, Mizuno K, Sakazume S, Fujiki T, et al. Recurrent EIARF and PRES with severe renal hypouricemia by compound heterozygous SLC2A9 mutation. Pediatrics. 2011;127:e1621–5.PubMedCrossRef
61.
go back to reference Kimura T, Iio K, Imai E, Rakugi H, Isaka Y, Hayashi T. Exercise induced acute kidney injury with reversible posterior leukoencephalopathy syndrome. Clin Exp Nephrol. 2010;14:173–5.PubMedCrossRef Kimura T, Iio K, Imai E, Rakugi H, Isaka Y, Hayashi T. Exercise induced acute kidney injury with reversible posterior leukoencephalopathy syndrome. Clin Exp Nephrol. 2010;14:173–5.PubMedCrossRef
62.
go back to reference Bhasin B, Stiburkova B, De Castro-Pretelt M, Beck N, Bodurtha JN, Atta MG. Hereditary renal hypouricemia: a new role for allopurinol? Am J Med. 2014;127:e3–4.PubMedCrossRef Bhasin B, Stiburkova B, De Castro-Pretelt M, Beck N, Bodurtha JN, Atta MG. Hereditary renal hypouricemia: a new role for allopurinol? Am J Med. 2014;127:e3–4.PubMedCrossRef
63.
go back to reference Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004;15:164–73.PubMedCrossRef Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004;15:164–73.PubMedCrossRef
64.
go back to reference Hamajima N, Naito M, Hishida A, Okada R, Asai Y, Wakai K, et al. Serum uric acid distribution according to SLC22A12 W258X genotype in a cross-sectional study of a general Japanese population. BMC Med Genet. 2011;12:33.PubMedPubMedCentralCrossRef Hamajima N, Naito M, Hishida A, Okada R, Asai Y, Wakai K, et al. Serum uric acid distribution according to SLC22A12 W258X genotype in a cross-sectional study of a general Japanese population. BMC Med Genet. 2011;12:33.PubMedPubMedCentralCrossRef
65.
go back to reference Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant. 2011;26:2175–81.PubMedCrossRef Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant. 2011;26:2175–81.PubMedCrossRef
66.
go back to reference Hisatome I, Tanaka Y, Kotake H, Kosaka H, Hirata N, Fujimoto Y, et al. Renal hypouricemia due to enhanced tubular secretion of urate associated with urolithiasis:successful treatment of urolithiasis by alkalization of urine K+, Na+-citrate. Nephron. 1993;65:578–82.PubMedCrossRef Hisatome I, Tanaka Y, Kotake H, Kosaka H, Hirata N, Fujimoto Y, et al. Renal hypouricemia due to enhanced tubular secretion of urate associated with urolithiasis:successful treatment of urolithiasis by alkalization of urine K+, Na+-citrate. Nephron. 1993;65:578–82.PubMedCrossRef
67.
go back to reference Sugihara S, Hisatome I, Kuwabara M, Niwa K, Maharani N, Kato M, et al. Depletion of uric acid due to SLC22A12 (URAT1) loss-of-function mutation causes endothelial dysfunction in hypouricemia. Circ J. 2015;79:1125–32.PubMedCrossRef Sugihara S, Hisatome I, Kuwabara M, Niwa K, Maharani N, Kato M, et al. Depletion of uric acid due to SLC22A12 (URAT1) loss-of-function mutation causes endothelial dysfunction in hypouricemia. Circ J. 2015;79:1125–32.PubMedCrossRef
68.
go back to reference Tabara Y, Kohara K, Kawamoto R, Hiura Y, Nishimura K, Morisaki T, et al. Association of four genetic loci with uric acid levels and reduced renal function: the J-SHIPP Suita study. Am J Nephrol. 2010;32:279–86.PubMedCrossRef Tabara Y, Kohara K, Kawamoto R, Hiura Y, Nishimura K, Morisaki T, et al. Association of four genetic loci with uric acid levels and reduced renal function: the J-SHIPP Suita study. Am J Nephrol. 2010;32:279–86.PubMedCrossRef
69.
go back to reference Wakida N, Tuyen DG, Adachi M, Tuyen DG, Adachi M, Miyoshi T, et al. Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. J Clin Endocrinol Metab. 2005;90:2169–74.PubMedCrossRef Wakida N, Tuyen DG, Adachi M, Tuyen DG, Adachi M, Miyoshi T, et al. Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. J Clin Endocrinol Metab. 2005;90:2169–74.PubMedCrossRef
70.
go back to reference Ouellet G, Lin SH, Nolin L, Bonnardeaux A. Hereditary renal hypouricemia in a Caucasian patient: a case report and review of the literature. Nephrol Ther. 2009;5:568–71.PubMedCrossRef Ouellet G, Lin SH, Nolin L, Bonnardeaux A. Hereditary renal hypouricemia in a Caucasian patient: a case report and review of the literature. Nephrol Ther. 2009;5:568–71.PubMedCrossRef
71.
go back to reference Tzovaras V, Chatzikyriakidou A, Bairaktari E, Liberopoulos EN, Georgiou I, Elisaf M. Absence of SLC22A12 gene mutations in Greek Caucasian patients with primary renal hypouricaemia. Scand J Clin Lab Invest. 2007;67:589–95.PubMedCrossRef Tzovaras V, Chatzikyriakidou A, Bairaktari E, Liberopoulos EN, Georgiou I, Elisaf M. Absence of SLC22A12 gene mutations in Greek Caucasian patients with primary renal hypouricaemia. Scand J Clin Lab Invest. 2007;67:589–95.PubMedCrossRef
Metadata
Title
Non-urate transporter 1, non-glucose transporter member 9-related renal hypouricemia and acute renal failure accompanied by hyperbilirubinemia after anaerobic exercise: a case report
Authors
Yoshitaka Furuto
Mariko Kawamura
Akio Namikawa
Hiroko Takahashi
Yuko Shibuya
Takayasu Mori
Eisei Sohara
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1618-1

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue