Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Glomerulonephritis | Research article

Characterization of glomerular extracellular matrix in IgA nephropathy by proteomic analysis of laser-captured microdissected glomeruli

Authors: Flavia Teodora Ioana Paunas, Kenneth Finne, Sabine Leh, Tarig Al-Hadi Osman, Hans-Peter Marti, Frode Berven, Bjørn Egil Vikse

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

IgA nephropathy (IgAN) involves mesangial matrix expansion, but the proteomic composition of this matrix is unknown. The present study aimed to characterize changes in extracellular matrix in IgAN.

Methods

In the present study we used mass spectrometry-based proteomics in order to quantitatively compare protein abundance between glomeruli of patients with IgAN (n = 25) and controls with normal biopsy findings (n = 15).

Results

Using a previously published paper by Lennon et al. and cross-referencing with the Matrisome database we identified 179 extracellular matrix proteins. In the comparison between IgAN and controls, IgAN glomeruli showed significantly higher abundance of extracellular matrix structural proteins (e.g periostin, vitronectin, and extracellular matrix protein 1) and extracellular matrix associated proteins (e.g. azurocidin, myeloperoxidase, neutrophil elastase, matrix metalloproteinase-9 and matrix metalloproteinase 2). Periostin (fold change 3.3) and azurocidin (3.0) had the strongest fold change between IgAN and controls; periostin was also higher in IgAN patients who progressed to ESRD as compared to patients who did not.

Conclusion

IgAN is associated with widespread changes of the glomerular extracellular matrix proteome. Proteins important in glomerular sclerosis or inflammation seem to be most strongly increased and periostin might be an important marker of glomerular damage in IgAN.
Appendix
Available only for authorised users
Literature
1.
go back to reference D'Amico G. The commonest glomerulonephritis in the world: IgA nephropathy. Q J Med. 1987;64(245):709–27.PubMed D'Amico G. The commonest glomerulonephritis in the world: IgA nephropathy. Q J Med. 1987;64(245):709–27.PubMed
2.
go back to reference Maixnerova D, Reily C, Bian Q, Neprasova M, Novak J, Tesar V. Markers for the progression of IgA nephropathy. J Nephrol. 2016;29(4):535–41.CrossRef Maixnerova D, Reily C, Bian Q, Neprasova M, Novak J, Tesar V. Markers for the progression of IgA nephropathy. J Nephrol. 2016;29(4):535–41.CrossRef
3.
go back to reference Coppo R, D'Amico G. Factors predicting progression of IgA nephropathies. J Nephrol. 2005;18(5):503–12.PubMed Coppo R, D'Amico G. Factors predicting progression of IgA nephropathies. J Nephrol. 2005;18(5):503–12.PubMed
4.
go back to reference Salvadori M, Rosso G. Update on immunoglobulin a nephropathy, Part I: Pathophysiology. World J Nephrol. 2015;4(4):455–67.CrossRef Salvadori M, Rosso G. Update on immunoglobulin a nephropathy, Part I: Pathophysiology. World J Nephrol. 2015;4(4):455–67.CrossRef
5.
go back to reference Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76(5):546–56.CrossRef Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76(5):546–56.CrossRef
6.
go back to reference Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014;7(1):4.CrossRef Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014;7(1):4.CrossRef
7.
go back to reference Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, et al. Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol. 2014;25(5):939–51.CrossRef Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, et al. Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol. 2014;25(5):939–51.CrossRef
8.
go back to reference Hobeika L, Barati MT, Caster DJ, McLeish KR, Merchant ML. Characterization of glomerular extracellular matrix by proteomic analysis of laser-captured microdissected glomeruli. Kidney Int. 2017;91(2):501–11.CrossRef Hobeika L, Barati MT, Caster DJ, McLeish KR, Merchant ML. Characterization of glomerular extracellular matrix by proteomic analysis of laser-captured microdissected glomeruli. Kidney Int. 2017;91(2):501–11.CrossRef
9.
go back to reference Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.CrossRef Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.CrossRef
10.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef
11.
go back to reference Paunas TIF, Finne K, Leh S, Marti HP, Mollnes TE, Berven F, et al. Glomerular abundance of complement proteins characterized by proteomic analysis of laser-captured microdissected glomeruli associates with progressive disease in IgA nephropathy. Clin Proteomics. 2017;14:30.CrossRef Paunas TIF, Finne K, Leh S, Marti HP, Mollnes TE, Berven F, et al. Glomerular abundance of complement proteins characterized by proteomic analysis of laser-captured microdissected glomeruli associates with progressive disease in IgA nephropathy. Clin Proteomics. 2017;14:30.CrossRef
12.
go back to reference Finne K, Vethe H, Skogstrand T, Leh S, Dahl TD, Tenstad O, et al. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats. Nephrol Dial Transplant. 2014;29(12):2217–27.CrossRef Finne K, Vethe H, Skogstrand T, Leh S, Dahl TD, Tenstad O, et al. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats. Nephrol Dial Transplant. 2014;29(12):2217–27.CrossRef
13.
go back to reference Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45.CrossRef Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45.CrossRef
14.
go back to reference Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22(10):1795–803.CrossRef Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22(10):1795–803.CrossRef
15.
go back to reference Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem. 1983;132(2):345–52.CrossRef Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem. 1983;132(2):345–52.CrossRef
16.
go back to reference Baici A, Knopfel M, Fehr K. Cathepsin G from human polymorphonuclear leukocytes cleaves human IgM. Mol Immunol. 1982;19(5):719–27.CrossRef Baici A, Knopfel M, Fehr K. Cathepsin G from human polymorphonuclear leukocytes cleaves human IgM. Mol Immunol. 1982;19(5):719–27.CrossRef
17.
go back to reference Gabay JE, Almeida RP. Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes: defensins and azurocidin. Curr Opin Immunol. 1993;5(1):97–102.CrossRef Gabay JE, Almeida RP. Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes: defensins and azurocidin. Curr Opin Immunol. 1993;5(1):97–102.CrossRef
18.
go back to reference Soehnlein O, Lindbom L. Neutrophil-derived azurocidin alarms the immune system. J Leukoc Biol. 2009;85(3):344–51.CrossRef Soehnlein O, Lindbom L. Neutrophil-derived azurocidin alarms the immune system. J Leukoc Biol. 2009;85(3):344–51.CrossRef
19.
go back to reference Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis. Kidney Int Suppl. 2010;119:S22–6.CrossRef Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis. Kidney Int Suppl. 2010;119:S22–6.CrossRef
20.
go back to reference Prakoura N, Chatziantoniou C. Periostin in kidney diseases. Cell Mol Life Sci. 2017;74(23):4315–20.CrossRef Prakoura N, Chatziantoniou C. Periostin in kidney diseases. Cell Mol Life Sci. 2017;74(23):4315–20.CrossRef
21.
go back to reference Sunamoto M, Kuze K, Tsuji H, Ohishi N, Yagi K, Nagata K, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis. Lab Investig. 1998;78(8):967–72.PubMed Sunamoto M, Kuze K, Tsuji H, Ohishi N, Yagi K, Nagata K, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis. Lab Investig. 1998;78(8):967–72.PubMed
23.
go back to reference Zhao H, Dong Y, Tian X, Tan TK, Liu Z, Zhao Y, et al. Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J Nephrol. 2013;2(3):84–9.CrossRef Zhao H, Dong Y, Tian X, Tan TK, Liu Z, Zhao Y, et al. Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J Nephrol. 2013;2(3):84–9.CrossRef
24.
go back to reference Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C, et al. Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS One. 2012;7(3):e31974.CrossRef Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C, et al. Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS One. 2012;7(3):e31974.CrossRef
25.
go back to reference Sen K, Lindenmeyer MT, Gaspert A, Eichinger F, Neusser MA, Kretzler M, et al. Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am J Pathol. 2011;179(4):1756–67.CrossRef Sen K, Lindenmeyer MT, Gaspert A, Eichinger F, Neusser MA, Kretzler M, et al. Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am J Pathol. 2011;179(4):1756–67.CrossRef
26.
go back to reference Prakoura N, Kavvadas P, Kormann R, Dussaule JC, Chadjichristos CE, Chatziantoniou C. NFkappaB-induced Periostin activates integrin-beta3 signaling to promote renal injury in GN. J Am Soc Nephrol. 2017;28(5):1475–90.CrossRef Prakoura N, Kavvadas P, Kormann R, Dussaule JC, Chadjichristos CE, Chatziantoniou C. NFkappaB-induced Periostin activates integrin-beta3 signaling to promote renal injury in GN. J Am Soc Nephrol. 2017;28(5):1475–90.CrossRef
27.
go back to reference Eddy AA. Progression in chronic kidney disease. Adv Chronic Kidney Dis. 2005;12(4):353–65.CrossRef Eddy AA. Progression in chronic kidney disease. Adv Chronic Kidney Dis. 2005;12(4):353–65.CrossRef
28.
go back to reference Turck J, Pollock AS, Lee LK, Marti HP, Lovett DH. Matrix metalloproteinase 2 (gelatinase a) regulates glomerular mesangial cell proliferation and differentiation. J Biol Chem. 1996;271(25):15074–83.CrossRef Turck J, Pollock AS, Lee LK, Marti HP, Lovett DH. Matrix metalloproteinase 2 (gelatinase a) regulates glomerular mesangial cell proliferation and differentiation. J Biol Chem. 1996;271(25):15074–83.CrossRef
29.
go back to reference Cheng S, Lovett DH. Gelatinase a (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol. 2003;162(6):1937–49.CrossRef Cheng S, Lovett DH. Gelatinase a (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol. 2003;162(6):1937–49.CrossRef
30.
go back to reference Tan TK, Zheng G, Hsu TT, Wang Y, Lee VW, Tian X, et al. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am J Pathol. 2010;176(3):1256–70.CrossRef Tan TK, Zheng G, Hsu TT, Wang Y, Lee VW, Tian X, et al. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am J Pathol. 2010;176(3):1256–70.CrossRef
31.
go back to reference Liu P, Lassen E, Nair V, Berthier CC, Suguro M, Sihlbom C, et al. Transcriptomic and proteomic profiling provides insight into Mesangial cell function in IgA nephropathy. J Am Soc Nephrol. 2017;28(10):2961–72.CrossRef Liu P, Lassen E, Nair V, Berthier CC, Suguro M, Sihlbom C, et al. Transcriptomic and proteomic profiling provides insight into Mesangial cell function in IgA nephropathy. J Am Soc Nephrol. 2017;28(10):2961–72.CrossRef
32.
go back to reference Ebefors K, Granqvist A, Ingelsten M, Molne J, Haraldsson B, Nystrom J. Role of glomerular proteoglycans in IgA nephropathy. PLoS One. 2011;6(4):e18575.CrossRef Ebefors K, Granqvist A, Ingelsten M, Molne J, Haraldsson B, Nystrom J. Role of glomerular proteoglycans in IgA nephropathy. PLoS One. 2011;6(4):e18575.CrossRef
33.
go back to reference Fogo AB. Mesangial matrix modulation and glomerulosclerosis. Exp Nephrol. 1999;7(2):147–59.CrossRef Fogo AB. Mesangial matrix modulation and glomerulosclerosis. Exp Nephrol. 1999;7(2):147–59.CrossRef
34.
go back to reference Packham DK. Thin basement membrane nephropathy and IgA glomerulonephritis: can they be distinguished without renal biopsy? Nephrology (Carlton). 2007;12(5):481–6.CrossRef Packham DK. Thin basement membrane nephropathy and IgA glomerulonephritis: can they be distinguished without renal biopsy? Nephrology (Carlton). 2007;12(5):481–6.CrossRef
35.
go back to reference Masuda Y, Yamanaka N, Ishikawa A, Kataoka M, Arai T, Wakamatsu K, et al. Glomerular basement membrane injuries in IgA nephropathy evaluated by double immunostaining for alpha5(IV) and alpha2(IV) chains of type IV collagen and low-vacuum scanning electron microscopy. Clin Exp Nephrol. 2015;19(3):427–35.CrossRef Masuda Y, Yamanaka N, Ishikawa A, Kataoka M, Arai T, Wakamatsu K, et al. Glomerular basement membrane injuries in IgA nephropathy evaluated by double immunostaining for alpha5(IV) and alpha2(IV) chains of type IV collagen and low-vacuum scanning electron microscopy. Clin Exp Nephrol. 2015;19(3):427–35.CrossRef
Metadata
Title
Characterization of glomerular extracellular matrix in IgA nephropathy by proteomic analysis of laser-captured microdissected glomeruli
Authors
Flavia Teodora Ioana Paunas
Kenneth Finne
Sabine Leh
Tarig Al-Hadi Osman
Hans-Peter Marti
Frode Berven
Bjørn Egil Vikse
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1598-1

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue