Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Peritoneal Dialysis | Research article

Delayed administration of suramin attenuates peritoneal fibrosis in rats

Authors: Chongxiang Xiong, Na Liu, Xiaofei Shao, Sairah Sharif, Hequn Zou, Shougang Zhuang

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Peritoneal fibrosis is the most common complication of peritoneal dialysis, but there is currently no effective treatment. We previously reported that suramin pretreatment prevents the development of peritoneal fibrosis in a rat model of peritoneal fibrosis induced by chlorhexidine gluconate (CG). Here, we further examined the effectiveness of delayed administration of suramin on peritoneal fibrosis and the mechanism (s) involved in this process.

Methods

In the rat model of peritoneal fibrosis induced by CG, suramin or saline was administered at day 21 and 28. All rats were then sacrificed to collect peritoneal tissues for Western blot analysis and histological staining at day 35.

Results

Our results demonstrated that delayed administration of suramin starting at 21 days following CG injection can ameliorate peritoneal damage, with greater efficacy after two injections. Suramin also reduced the expression of α-smooth muscle actin, Collagen 1, and Fibronectin and suppressed phosphorylation of Smad-3, epidermal growth factor receptor (EGFR), signal transducers, activator of transcription 3 (STAT3) as well as extracellular signal-regulated kinases 1/2 (ERK 1/2) in the peritoneum injured with CG. Moreover, delayed administration of suramin inhibited overproduction of transforming growth factor-β1(TGF-β1) and expression of several pro-inflammatory cytokines, including monocyte chemoattractant protein-1, tumor necrosis factor-α, interleukin-1, and interleukin-6.

Conclusions

Our results indicated that suramin can attenuate progression of peritoneal fibrosis by a mechanism involving inhibition of the TGF-β1/Smad3 and EGFR signaling pathways as well as suppression of multiple proinflammatory cytokines. Thus, suramin may have the potential to offer an effective treatment for peritoneal fibrosis.
Literature
1.
go back to reference Stavenuiter AW, Farhat K, Schilte MN, Ter Wee PM, Beelen RH. Bioincompatible impact of different peritoneal dialysis fluid components and therapeutic interventions as tested in a rat peritoneal dialysis model. Int J Nephro. 2011;2011:742196.CrossRef Stavenuiter AW, Farhat K, Schilte MN, Ter Wee PM, Beelen RH. Bioincompatible impact of different peritoneal dialysis fluid components and therapeutic interventions as tested in a rat peritoneal dialysis model. Int J Nephro. 2011;2011:742196.CrossRef
2.
go back to reference Nakayama M, Terawaki H. Multidisciplinary clinical strategies for encapsulating peritoneal sclerosis in peritoneal dialysis: update from Japan. Int J Urol. 2014;21(8):755–61.CrossRef Nakayama M, Terawaki H. Multidisciplinary clinical strategies for encapsulating peritoneal sclerosis in peritoneal dialysis: update from Japan. Int J Urol. 2014;21(8):755–61.CrossRef
3.
go back to reference Heimburger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int. 1990;38(3):495–506.CrossRef Heimburger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int. 1990;38(3):495–506.CrossRef
4.
go back to reference Wenzler T, Steinhuber A, Wittlin S, Scheurer C, Brun R, Trampuz A. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and plasmodium falciparum. PLoS Negl Trop Dis. 2012;6(6):e1668.CrossRef Wenzler T, Steinhuber A, Wittlin S, Scheurer C, Brun R, Trampuz A. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and plasmodium falciparum. PLoS Negl Trop Dis. 2012;6(6):e1668.CrossRef
5.
go back to reference McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP. Suramin: clinical uses and structure-activity relationships. Mini-Rev Med Chem. 2008;8(13):1384–94.CrossRef McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP. Suramin: clinical uses and structure-activity relationships. Mini-Rev Med Chem. 2008;8(13):1384–94.CrossRef
6.
go back to reference Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int. 2016;90(3):515–24.CrossRef Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int. 2016;90(3):515–24.CrossRef
7.
go back to reference Smaldone MC, Gayed BA, Tomaszewski JJ, Gingrich JR. Strategies to enhance the efficacy of intravescical therapy for non-muscle invasive bladder cancer. Minerva Urol Nefrol. 2009;61(2):71–89.PubMed Smaldone MC, Gayed BA, Tomaszewski JJ, Gingrich JR. Strategies to enhance the efficacy of intravescical therapy for non-muscle invasive bladder cancer. Minerva Urol Nefrol. 2009;61(2):71–89.PubMed
8.
go back to reference Mietz H, Krieglstein GK. Suramin to enhance glaucoma filtering procedures: a clinical comparison with mitomycin. Ophthalmic Surg Lasers. 2001;32(5):358–69.PubMed Mietz H, Krieglstein GK. Suramin to enhance glaucoma filtering procedures: a clinical comparison with mitomycin. Ophthalmic Surg Lasers. 2001;32(5):358–69.PubMed
9.
go back to reference Liu N, Tolbert E, Pang M, Ponnusamy M, Yan H, Zhuang S. Suramin inhibits renal fibrosis in chronic kidney disease. J Am Soc Nephrol. 2011;22(6):1064–75.CrossRef Liu N, Tolbert E, Pang M, Ponnusamy M, Yan H, Zhuang S. Suramin inhibits renal fibrosis in chronic kidney disease. J Am Soc Nephrol. 2011;22(6):1064–75.CrossRef
10.
go back to reference Fairclough RJ, Perkins KJ, Davies KE: Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy. Curr Gene Ther. 12(3):206–244. Fairclough RJ, Perkins KJ, Davies KE: Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy. Curr Gene Ther. 12(3):206–244.
11.
go back to reference He S, Rehman H, Shi Y, Krishnasamy Y, Lemasters JJ, Schnellmann RG, Zhong Z. Suramin decreases injury and improves regeneration of ethanol-induced steatotic partial liver grafts. J Pharmacol Exp Ther. 2013;344(2):417–25.CrossRef He S, Rehman H, Shi Y, Krishnasamy Y, Lemasters JJ, Schnellmann RG, Zhong Z. Suramin decreases injury and improves regeneration of ethanol-induced steatotic partial liver grafts. J Pharmacol Exp Ther. 2013;344(2):417–25.CrossRef
12.
go back to reference Shiono T, Kodama M, Hanawa H, Fuse K, Yamamoto T, Aizawa Y. Suppression of myocardial inflammation using suramin, a growth factor blocker. Circulation J. 2002;66(4):385–9.CrossRef Shiono T, Kodama M, Hanawa H, Fuse K, Yamamoto T, Aizawa Y. Suppression of myocardial inflammation using suramin, a growth factor blocker. Circulation J. 2002;66(4):385–9.CrossRef
13.
go back to reference Liu N, Guo JK, Pang M, Tolbert E, Ponnusamy M, Gong R, Bayliss G, Dworkin LD, Yan H, Zhuang S. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J Am Soc Nephrol. 2012;23(5):854–67.CrossRef Liu N, Guo JK, Pang M, Tolbert E, Ponnusamy M, Gong R, Bayliss G, Dworkin LD, Yan H, Zhuang S. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J Am Soc Nephrol. 2012;23(5):854–67.CrossRef
14.
go back to reference Okabe N, Nakamura E, Himi N, Narita K, Tsukamoto I, Maruyama T, Sakakibara N, Nakamura T, Itano T, Miyamoto O: Delayed administration of the nucleic acid analog 2Cl-C.OXT-A attenuates brain damage and enhances functional recovery after ischemic stroke. Brain Res. 2013, 1506:115–131.CrossRef Okabe N, Nakamura E, Himi N, Narita K, Tsukamoto I, Maruyama T, Sakakibara N, Nakamura T, Itano T, Miyamoto O: Delayed administration of the nucleic acid analog 2Cl-C.OXT-A attenuates brain damage and enhances functional recovery after ischemic stroke. Brain Res. 2013, 1506:115–131.CrossRef
15.
go back to reference Wang ZK, Wang ZX, Liu ZY, Ren YQ, Zhou ZQ: Effects of RNA interference-mediated gene silencing of VEGF on the ultrafiltration failure in a rat model of peritoneal dialysis. Bioscience Rep. 2017, 37(4). Wang ZK, Wang ZX, Liu ZY, Ren YQ, Zhou ZQ: Effects of RNA interference-mediated gene silencing of VEGF on the ultrafiltration failure in a rat model of peritoneal dialysis. Bioscience Rep. 2017, 37(4).
16.
go back to reference Wang W, Koka V, Lan HY. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology. 2005;10(1):48–56.CrossRef Wang W, Koka V, Lan HY. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology. 2005;10(1):48–56.CrossRef
17.
go back to reference Qin H, Wang L, Feng T, Elson CO, Niyongere SA, Lee SJ, Reynolds SL, Weaver CT, Roarty K, Serra R, et al. TGF-beta promotes Th17 cell development through inhibition of SOCS3. J Immunol. 2009;183(1):97–105.CrossRef Qin H, Wang L, Feng T, Elson CO, Niyongere SA, Lee SJ, Reynolds SL, Weaver CT, Roarty K, Serra R, et al. TGF-beta promotes Th17 cell development through inhibition of SOCS3. J Immunol. 2009;183(1):97–105.CrossRef
18.
go back to reference Chen SC, Guh JY, Lin TD, Chiou SJ, Hwang CC, Ko YM, Chuang LY. Gefitinib attenuates transforming growth factor-beta1-activated mitogen-activated protein kinases and mitogenesis in NRK-49F cells. Transl Res. 2011;158(4):214–24.CrossRef Chen SC, Guh JY, Lin TD, Chiou SJ, Hwang CC, Ko YM, Chuang LY. Gefitinib attenuates transforming growth factor-beta1-activated mitogen-activated protein kinases and mitogenesis in NRK-49F cells. Transl Res. 2011;158(4):214–24.CrossRef
19.
go back to reference Alison MR, Nicholson LJ, Lin WR. Chronic inflammation and hepatocellular carcinoma. Recent Results Cancer Res. 2011;185:135–48.CrossRef Alison MR, Nicholson LJ, Lin WR. Chronic inflammation and hepatocellular carcinoma. Recent Results Cancer Res. 2011;185:135–48.CrossRef
20.
go back to reference Samarakoon R, Overstreet JM, Higgins SP, Higgins PJ. TGF-beta1 --> SMAD/p53/USF2 --> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res. 2012;347(1):117–28.CrossRef Samarakoon R, Overstreet JM, Higgins SP, Higgins PJ. TGF-beta1 --> SMAD/p53/USF2 --> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res. 2012;347(1):117–28.CrossRef
21.
go back to reference Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J. 2014;44(2):513–22.CrossRef Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J. 2014;44(2):513–22.CrossRef
22.
go back to reference Wang L, Liu N, Xiong C, Xu L, Shi Y, Qiu A, Zang X, Mao H, Zhuang S. Inhibition of EGF receptor blocks the development and progression of peritoneal fibrosis. J Am Soc Nephrol. 2016;27(9):2631–44.CrossRef Wang L, Liu N, Xiong C, Xu L, Shi Y, Qiu A, Zang X, Mao H, Zhuang S. Inhibition of EGF receptor blocks the development and progression of peritoneal fibrosis. J Am Soc Nephrol. 2016;27(9):2631–44.CrossRef
23.
go back to reference Xiong C, Liu N, Fang L, Zhuang S, Yan H. Suramin inhibits the development and progression of peritoneal fibrosis. J Pharmacol Exp Ther. 2014;351(2):373–82.CrossRef Xiong C, Liu N, Fang L, Zhuang S, Yan H. Suramin inhibits the development and progression of peritoneal fibrosis. J Pharmacol Exp Ther. 2014;351(2):373–82.CrossRef
24.
go back to reference Pang M, Kothapally J, Mao H, Tolbert E, Ponnusamy M, Chin YE, Zhuang S. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2009;297(4):F996–f1005.CrossRef Pang M, Kothapally J, Mao H, Tolbert E, Ponnusamy M, Chin YE, Zhuang S. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2009;297(4):F996–f1005.CrossRef
25.
go back to reference Zhou G, Su X, Ma J, Wang L, Li D. Pioglitazone inhibits high glucose-induced synthesis of extracellular matrix by NF-kappaB and AP-1 pathways in rat peritoneal mesothelial cells. Mol Med Rep. 2013;7(4):1336–42.CrossRef Zhou G, Su X, Ma J, Wang L, Li D. Pioglitazone inhibits high glucose-induced synthesis of extracellular matrix by NF-kappaB and AP-1 pathways in rat peritoneal mesothelial cells. Mol Med Rep. 2013;7(4):1336–42.CrossRef
26.
go back to reference Liu Q, Zhang Y, Mao H, Chen W, Luo N, Zhou Q, Chen W, Yu X. A crosstalk between the Smad and JNK signaling in the TGF-beta-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells. PLoS One. 2012;7(2):e32009.CrossRef Liu Q, Zhang Y, Mao H, Chen W, Luo N, Zhou Q, Chen W, Yu X. A crosstalk between the Smad and JNK signaling in the TGF-beta-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells. PLoS One. 2012;7(2):e32009.CrossRef
27.
go back to reference Patel P, Sekiguchi Y, Oh KH, Patterson SE, Kolb MR, Margetts PJ. Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. Kidney Int. 2010;77(4):319–28.CrossRef Patel P, Sekiguchi Y, Oh KH, Patterson SE, Kolb MR, Margetts PJ. Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. Kidney Int. 2010;77(4):319–28.CrossRef
28.
go back to reference Craciun FL, Ajay AK, Hoffmann D, Saikumar J, Fabian SL, Bijol V, Humphreys BD, Vaidya VS. Pharmacological and genetic depletion of fibrinogen protects from kidney fibrosis. Am J Physiol Renal Physiol. 2014;307(4):F471–84.CrossRef Craciun FL, Ajay AK, Hoffmann D, Saikumar J, Fabian SL, Bijol V, Humphreys BD, Vaidya VS. Pharmacological and genetic depletion of fibrinogen protects from kidney fibrosis. Am J Physiol Renal Physiol. 2014;307(4):F471–84.CrossRef
29.
go back to reference Kendrick J, Teitelbaum I: Strategies for improving long-term survival in peritoneal dialysis patients. Clin J Am Soc Nephrol: CJASN 2010, 5(6):1123–1131.CrossRef Kendrick J, Teitelbaum I: Strategies for improving long-term survival in peritoneal dialysis patients. Clin J Am Soc Nephrol: CJASN 2010, 5(6):1123–1131.CrossRef
30.
go back to reference Perl J, Nessim SJ, Bargman JM. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int. 2011;79(8):814–24.CrossRef Perl J, Nessim SJ, Bargman JM. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int. 2011;79(8):814–24.CrossRef
31.
go back to reference Chan YS, Li Y, Foster W, Fu FH, Huard J. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am J Sports Med. 2005;33(1):43–51.CrossRef Chan YS, Li Y, Foster W, Fu FH, Huard J. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am J Sports Med. 2005;33(1):43–51.CrossRef
32.
go back to reference Duan WJ, Yu X, Huang XR, Yu JW, Lan HY. Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro. Am J Pathol. 2014;184(8):2275–84.CrossRef Duan WJ, Yu X, Huang XR, Yu JW, Lan HY. Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro. Am J Pathol. 2014;184(8):2275–84.CrossRef
33.
go back to reference Dai B, Cui M, Zhu M, Su WL, Qiu MC, Zhang H. STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose. Cell Physiol Biochem. 2013;32(4):960–71.CrossRef Dai B, Cui M, Zhu M, Su WL, Qiu MC, Zhang H. STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose. Cell Physiol Biochem. 2013;32(4):960–71.CrossRef
34.
go back to reference Devuyst O, Margetts PJ, Topley N: The pathophysiology of the peritoneal membrane.: J Am Soc Nephrol 2010, 21(7):1077–1085.CrossRef Devuyst O, Margetts PJ, Topley N: The pathophysiology of the peritoneal membrane.: J Am Soc Nephrol 2010, 21(7):1077–1085.CrossRef
35.
go back to reference de Lima SM, Otoni A, Sabino Ade P, Dusse LM, Gomes KB, Pinto SW, Marinho MA, Rios DR. Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clin Chim Acta. 2013;421:46–50.CrossRef de Lima SM, Otoni A, Sabino Ade P, Dusse LM, Gomes KB, Pinto SW, Marinho MA, Rios DR. Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clin Chim Acta. 2013;421:46–50.CrossRef
36.
go back to reference Wakabayashi K, Hamada C, Kanda R, Nakano T, Io H, Horikoshi S, Tomino Y. Oral Astaxanthin supplementation prevents peritoneal fibrosis in rats. Perit Dial Int. 2015;35(5):506–16.CrossRef Wakabayashi K, Hamada C, Kanda R, Nakano T, Io H, Horikoshi S, Tomino Y. Oral Astaxanthin supplementation prevents peritoneal fibrosis in rats. Perit Dial Int. 2015;35(5):506–16.CrossRef
37.
go back to reference Baroni G, Schuinski A, de Moraes TP, Meyer F, Pecoits-Filho R. Inflammation and the peritoneal membrane: causes and impact on structure and function during peritoneal dialysis. Mediat Inflamm. 2012;2012:912595.CrossRef Baroni G, Schuinski A, de Moraes TP, Meyer F, Pecoits-Filho R. Inflammation and the peritoneal membrane: causes and impact on structure and function during peritoneal dialysis. Mediat Inflamm. 2012;2012:912595.CrossRef
Metadata
Title
Delayed administration of suramin attenuates peritoneal fibrosis in rats
Authors
Chongxiang Xiong
Na Liu
Xiaofei Shao
Sairah Sharif
Hequn Zou
Shougang Zhuang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1597-2

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue