Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Biomarkers | Research article

Differential methylation as a diagnostic biomarker of rare renal diseases: a systematic review

Authors: Katie Kerr, Helen McAneney, Cheryl Flanagan, Alexander P. Maxwell, Amy Jayne McKnight

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

The challenges in diagnosis of rare renal conditions can negatively impact patient prognosis, quality of life and result in significant healthcare costs. Differential methylation is emerging as an important biomarker for rare diseases and should be evaluated for rare renal conditions.

Methods

A comprehensive systematic review of methylation and rare renal disorders was conducted by searching the electronic databases MEDLINE, EMBASE, PubMed, Cochrane Library, alongside grey literature from GreyLit and OpenGrey databases, for publications published before September 2018. Additionally, the reference lists of the included papers were searched. Data was extracted and appraised including the primary focus, measurement and methodological rigour of the source. Eligibility criteria were adapted using the inclusion criteria from ‘The 100,000 Genomes Project’ and The National Registry of Rare Kidney Diseases, with additional focus on methylation.

Results

Thirteen full text articles were included in the review. Diseases analysed for differential methylation included glomerular disease, IgA nephropathy, ADPKD, rare causes of proteinuria, congenital renal agenesis, and membranous nephropathy.

Conclusions

Differential methylation has been observed for several rare renal diseases, highlighting its potential for improving molecular characterisation of these disorders. Further investigation of methylation following a standardised reporting structure is necessary to improve research quality. Multi-omic data will provide insights for improved diagnosis, prognosis and support for individuals living and working with rare renal diseases.
Appendix
Available only for authorised users
Literature
3.
go back to reference Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013;14:681.PubMedCrossRef Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013;14:681.PubMedCrossRef
4.
go back to reference Soliman NA. Orphan kidney diseases. Nephron Clin Pract. 2012;120(4):c194–9.PubMed Soliman NA. Orphan kidney diseases. Nephron Clin Pract. 2012;120(4):c194–9.PubMed
5.
go back to reference Devuyst O, Knoers NVAM, Remuzzi G, Schaefer F. For the Board of the Working Group for inherited kidney diseases of the European renal a, European D, et al. rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014;383(9931):1844–59.PubMedPubMedCentralCrossRef Devuyst O, Knoers NVAM, Remuzzi G, Schaefer F. For the Board of the Working Group for inherited kidney diseases of the European renal a, European D, et al. rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014;383(9931):1844–59.PubMedPubMedCentralCrossRef
6.
go back to reference Yu HH, Chiang BL. Diagnosis and classification of IgA nephropathy. Autoimmun Rev. 2014;13(4–5):556–9.PubMedCrossRef Yu HH, Chiang BL. Diagnosis and classification of IgA nephropathy. Autoimmun Rev. 2014;13(4–5):556–9.PubMedCrossRef
8.
go back to reference Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.CrossRef Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.CrossRef
14.
go back to reference Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9(386).PubMedPubMedCentralCrossRef Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9(386).PubMedPubMedCentralCrossRef
15.
go back to reference Lu P, Wang P, Li L, Xu C, Liu JC, Guo X, et al. Exomic and Epigenomic analyses in a pair of monozygotic twins discordant for cryptorchidism. Twin Res Hum Genet. 2017;20(4):349–54.PubMedCrossRef Lu P, Wang P, Li L, Xu C, Liu JC, Guo X, et al. Exomic and Epigenomic analyses in a pair of monozygotic twins discordant for cryptorchidism. Twin Res Hum Genet. 2017;20(4):349–54.PubMedCrossRef
16.
go back to reference Szelinger S, Malenica I, Corneveaux JJ, Siniard AL, Kurdoglu AA, Ramsey KM, et al. Characterization of X chromosome inactivation using integrated analysis of whole-exome and mRNA sequencing. PLoS One. 2014;9(12):e113036.PubMedPubMedCentralCrossRef Szelinger S, Malenica I, Corneveaux JJ, Siniard AL, Kurdoglu AA, Ramsey KM, et al. Characterization of X chromosome inactivation using integrated analysis of whole-exome and mRNA sequencing. PLoS One. 2014;9(12):e113036.PubMedPubMedCentralCrossRef
17.
go back to reference Bak M, Boonen SE, Dahl C, Hahnemann JM, Mackay DJ, Tumer Z, et al. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57. BMC Med Genet. 2016;17:29.PubMedPubMedCentralCrossRef Bak M, Boonen SE, Dahl C, Hahnemann JM, Mackay DJ, Tumer Z, et al. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57. BMC Med Genet. 2016;17:29.PubMedPubMedCentralCrossRef
18.
go back to reference Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8(6):148.PubMedCentralCrossRef Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8(6):148.PubMedCentralCrossRef
19.
go back to reference Mansell G, Gorrie-Stone TJ, Bao Y, Kumari M, Schalkwyk LS, Mill J, et al. Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array. BMC Genomics. 2019;20(1):366.PubMedPubMedCentralCrossRef Mansell G, Gorrie-Stone TJ, Bao Y, Kumari M, Schalkwyk LS, Mill J, et al. Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array. BMC Genomics. 2019;20(1):366.PubMedPubMedCentralCrossRef
20.
go back to reference Gunasekara CJ, Scott CA, Laritsky E, Baker MS, MacKay H, Duryea JD, et al. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biol. 2019;20(1):105.PubMedPubMedCentralCrossRef Gunasekara CJ, Scott CA, Laritsky E, Baker MS, MacKay H, Duryea JD, et al. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biol. 2019;20(1):105.PubMedPubMedCentralCrossRef
21.
go back to reference Hüls A, Czamara D. Methodological challenges in constructing DNA methylation risk scores. Epigenetics. 2019; null-null. Hüls A, Czamara D. Methodological challenges in constructing DNA methylation risk scores. Epigenetics. 2019; null-null.
23.
go back to reference Cotton AM, Price EM, Jones MJ, Balaton BP, Kobor MS, Brown CJ. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum Mol Genet. 2015;24(6):1528–39.PubMedCrossRef Cotton AM, Price EM, Jones MJ, Balaton BP, Kobor MS, Brown CJ. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum Mol Genet. 2015;24(6):1528–39.PubMedCrossRef
24.
go back to reference Zheng Y, Joyce BT, Liu L, Zhang Z, Kibbe WA, Zhang W, et al. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res. 2017;45(15):8697–711.PubMedPubMedCentralCrossRef Zheng Y, Joyce BT, Liu L, Zhang Z, Kibbe WA, Zhang W, et al. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res. 2017;45(15):8697–711.PubMedPubMedCentralCrossRef
25.
go back to reference Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85.PubMedCrossRef Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85.PubMedCrossRef
26.
go back to reference Zhou J, Sears RL, Xing X, Zhang B, Li D, Rockweiler NB, et al. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics. 2017;18(1):724.PubMedPubMedCentralCrossRef Zhou J, Sears RL, Xing X, Zhang B, Li D, Rockweiler NB, et al. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics. 2017;18(1):724.PubMedPubMedCentralCrossRef
27.
go back to reference Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484.CrossRef Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484.CrossRef
28.
go back to reference Zheng J, Cheng J, Zhang Q, Xiao X. Novel insights into DNA methylation and its critical implications in diabetic vascular complications. Biosci Rep. 2017;37(2):BSR20160611.PubMedPubMedCentralCrossRef Zheng J, Cheng J, Zhang Q, Xiao X. Novel insights into DNA methylation and its critical implications in diabetic vascular complications. Biosci Rep. 2017;37(2):BSR20160611.PubMedPubMedCentralCrossRef
29.
go back to reference Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM, Williamson CA, et al. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integrative biology : quantitative biosciences from nano to macro. 2014;6(4):388–98.CrossRef Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM, Williamson CA, et al. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integrative biology : quantitative biosciences from nano to macro. 2014;6(4):388–98.CrossRef
30.
go back to reference Yokoyama AS, Rutledge JC, Medici V. DNA methylation alterations in Alzheimer’s disease. Environ.Epigenetics. 2017;3(2):dvx008–dvx.CrossRef Yokoyama AS, Rutledge JC, Medici V. DNA methylation alterations in Alzheimer’s disease. Environ.Epigenetics. 2017;3(2):dvx008–dvx.CrossRef
31.
go back to reference Shen E, Shulha H, Weng Z, Akbarian S. Regulation of histone H3K4 methylation in brain development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1652):20130514.CrossRef Shen E, Shulha H, Weng Z, Akbarian S. Regulation of histone H3K4 methylation in brain development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1652):20130514.CrossRef
32.
go back to reference Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics. 2014;9(3):366–76.PubMedCrossRef Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics. 2014;9(3):366–76.PubMedCrossRef
33.
go back to reference Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol. 2014;307(7):F757–76.PubMedCrossRef Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol. 2014;307(7):F757–76.PubMedCrossRef
34.
go back to reference Heylen L, Thienpont B, Naesens M, Lambrechts D, Sprangers B. The emerging role of DNA methylation in kidney transplantation: a perspective. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2016;16(4):1070–8.CrossRef Heylen L, Thienpont B, Naesens M, Lambrechts D, Sprangers B. The emerging role of DNA methylation in kidney transplantation: a perspective. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2016;16(4):1070–8.CrossRef
36.
go back to reference Caliebe A, Richter J, Ammerpohl O, Kanber D, Beygo J, Bens S, et al. A familial disorder of altered DNA-methylation. J Med Genet. 2014;51(6):407–12.PubMedCrossRef Caliebe A, Richter J, Ammerpohl O, Kanber D, Beygo J, Bens S, et al. A familial disorder of altered DNA-methylation. J Med Genet. 2014;51(6):407–12.PubMedCrossRef
38.
go back to reference Houtepen LC, Hardy R, Maddock J, Kuh D, Anderson EL, Relton CL, et al. Childhood adversity and DNA methylation in two population-based cohorts. Transl Psychiatry. 2018;8(1):266.PubMedPubMedCentralCrossRef Houtepen LC, Hardy R, Maddock J, Kuh D, Anderson EL, Relton CL, et al. Childhood adversity and DNA methylation in two population-based cohorts. Transl Psychiatry. 2018;8(1):266.PubMedPubMedCentralCrossRef
39.
go back to reference Fiorito G, McCrory C, Robinson O, Carmeli C, Rosales CO, Zhang Y, et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging. 2019;11(7):2045–70.PubMedPubMedCentralCrossRef Fiorito G, McCrory C, Robinson O, Carmeli C, Rosales CO, Zhang Y, et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging. 2019;11(7):2045–70.PubMedPubMedCentralCrossRef
40.
go back to reference Santos HP Jr, Bhattacharya A, Martin EM, Addo K, Psioda M, Smeester L, et al. Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 2019;14(8):751–65.PubMedCrossRef Santos HP Jr, Bhattacharya A, Martin EM, Addo K, Psioda M, Smeester L, et al. Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 2019;14(8):751–65.PubMedCrossRef
41.
go back to reference Bush NR, Edgar RD, Park M, MacIsaac JL, McEwen LM, Adler NE, et al. The biological embedding of early-life socioeconomic status and family adversity in children's genome-wide DNA methylation. Epigenomics. 2018;10(11):1445–61.PubMedPubMedCentralCrossRef Bush NR, Edgar RD, Park M, MacIsaac JL, McEwen LM, Adler NE, et al. The biological embedding of early-life socioeconomic status and family adversity in children's genome-wide DNA methylation. Epigenomics. 2018;10(11):1445–61.PubMedPubMedCentralCrossRef
42.
go back to reference Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef
44.
46.
go back to reference Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123(3):A12–3.PubMed Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123(3):A12–3.PubMed
48.
go back to reference Sun Q, Zhang J, Zhou N, Liu X, Shen Y. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy. PLoS One. 2015;10(2):e0112305.PubMedPubMedCentralCrossRef Sun Q, Zhang J, Zhou N, Liu X, Shen Y. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy. PLoS One. 2015;10(2):e0112305.PubMedPubMedCentralCrossRef
49.
go back to reference Sallustio F, Serino G, Natasha Cox S, Gassa AD, Curci C, De Palma G, et al. Aberrant methylated DNA regions lead to low activation of CD4+ T cells with aconsequent imbalance of the th1/th2 polarization in IgA nephropathy patients. Nephrol Dial Transplant. 2016;31.CrossRef Sallustio F, Serino G, Natasha Cox S, Gassa AD, Curci C, De Palma G, et al. Aberrant methylated DNA regions lead to low activation of CD4+ T cells with aconsequent imbalance of the th1/th2 polarization in IgA nephropathy patients. Nephrol Dial Transplant. 2016;31.CrossRef
50.
go back to reference Qi S, Sui W, Yang M, Chen J, Dai Y. CpG array analysis of histone H3 lysine 4 trimethylation by chromatin immunoprecipitation linked to microarrays analysis in peripheral blood mononuclear cells of IgA nephropathy patients. Yonsei Med J. 2012;53(2):377–85.PubMedPubMedCentralCrossRef Qi S, Sui W, Yang M, Chen J, Dai Y. CpG array analysis of histone H3 lysine 4 trimethylation by chromatin immunoprecipitation linked to microarrays analysis in peripheral blood mononuclear cells of IgA nephropathy patients. Yonsei Med J. 2012;53(2):377–85.PubMedPubMedCentralCrossRef
51.
go back to reference Woo YM, Shin Y, Hwang J-A, Hwang Y-H, Lee S, Park EY, et al. Epigenetic silencing of the MUPCDH gene as a possible prognostic biomarker for cyst growth in ADPKD. Sci Rep. 2015;5:15238.PubMedCrossRef Woo YM, Shin Y, Hwang J-A, Hwang Y-H, Lee S, Park EY, et al. Epigenetic silencing of the MUPCDH gene as a possible prognostic biomarker for cyst growth in ADPKD. Sci Rep. 2015;5:15238.PubMedCrossRef
52.
go back to reference Woo YM, Bae JB, Oh YH, Lee YG, Lee MJ, Park EY, et al. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum Genet. 2014;133(3):281–97.PubMedCrossRef Woo YM, Bae JB, Oh YH, Lee YG, Lee MJ, Park EY, et al. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum Genet. 2014;133(3):281–97.PubMedCrossRef
53.
go back to reference Li LX, Fan LX, Zhou JX, Grantham JJ, Calvet JP, Sage J, et al. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J Clin Invest. 2017;127(7):2751–64.PubMedPubMedCentralCrossRef Li LX, Fan LX, Zhou JX, Grantham JJ, Calvet JP, Sage J, et al. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J Clin Invest. 2017;127(7):2751–64.PubMedPubMedCentralCrossRef
54.
go back to reference Sui WG, He HY, Yan Q, Chen JJ, Zhang RH, Dai Y. ChIP-seq analysis of histone H3K9 trimethylation in peripheral blood mononuclear cells of membranous nephropathy patients. Brazilian journal of medical and biological research =. Rev Bras Pesqui Med Biol. 2014;47(1):42–9. Sui WG, He HY, Yan Q, Chen JJ, Zhang RH, Dai Y. ChIP-seq analysis of histone H3K9 trimethylation in peripheral blood mononuclear cells of membranous nephropathy patients. Brazilian journal of medical and biological research =. Rev Bras Pesqui Med Biol. 2014;47(1):42–9.
55.
go back to reference Fujino T, Hasebe N. Alteration of histone H3K4 methylation in glomerular podocytes associated with proteinuria in patients with membranous nephropathy. BMC Nephrol. 2016;17(1):179.PubMedPubMedCentralCrossRef Fujino T, Hasebe N. Alteration of histone H3K4 methylation in glomerular podocytes associated with proteinuria in patients with membranous nephropathy. BMC Nephrol. 2016;17(1):179.PubMedPubMedCentralCrossRef
56.
go back to reference Hayashi K, Sasamura H, Nakamura M, Sakamaki Y, Azegami T, Oguchi H, et al. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like factor 4 and attenuates proteinuria. Kidney Int. 2015;88(4):745–53.PubMedCrossRef Hayashi K, Sasamura H, Nakamura M, Sakamaki Y, Azegami T, Oguchi H, et al. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like factor 4 and attenuates proteinuria. Kidney Int. 2015;88(4):745–53.PubMedCrossRef
57.
go back to reference Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest. 2014;124(6):2523–37.PubMedPubMedCentralCrossRef Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest. 2014;124(6):2523–37.PubMedPubMedCentralCrossRef
58.
go back to reference Ito Y, Katayama K, Nishibori Y, Akimoto Y, Kudo A, Kurayama R, et al. Wolf-Hirschhorn syndrome candidate 1-like 1 epigenetically regulates nephrin gene expression. Am J Physiol Renal Physiol. 2017;312(6):F1184–f99.PubMedCrossRef Ito Y, Katayama K, Nishibori Y, Akimoto Y, Kudo A, Kurayama R, et al. Wolf-Hirschhorn syndrome candidate 1-like 1 epigenetically regulates nephrin gene expression. Am J Physiol Renal Physiol. 2017;312(6):F1184–f99.PubMedCrossRef
59.
go back to reference Majumder S, Thieme K, Batchu SN, Alghamdi TA, Bowskill BB, Kabir MG, et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Invest. 2018;128(1):483–99.PubMedCrossRef Majumder S, Thieme K, Batchu SN, Alghamdi TA, Bowskill BB, Kabir MG, et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Invest. 2018;128(1):483–99.PubMedCrossRef
60.
go back to reference Jin M, Zhu S, Hu P, Liu D, Li Q, Li Z, et al. Genomic and epigenomic analyses of monozygotic twins discordant for congenital renal agenesis. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2014;64(1):119–22.CrossRef Jin M, Zhu S, Hu P, Liu D, Li Q, Li Z, et al. Genomic and epigenomic analyses of monozygotic twins discordant for congenital renal agenesis. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2014;64(1):119–22.CrossRef
61.
go back to reference McGrogan A, Franssen CFM, de Vries CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant. 2010;26(2):414–30.PubMedCrossRef McGrogan A, Franssen CFM, de Vries CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant. 2010;26(2):414–30.PubMedCrossRef
62.
go back to reference Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of genetic association studies (STREGA)--an extension of the STROBE statement. Genet Epidemiol. 2009;33(7):581–98.PubMedCrossRef Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of genetic association studies (STREGA)--an extension of the STROBE statement. Genet Epidemiol. 2009;33(7):581–98.PubMedCrossRef
Metadata
Title
Differential methylation as a diagnostic biomarker of rare renal diseases: a systematic review
Authors
Katie Kerr
Helen McAneney
Cheryl Flanagan
Alexander P. Maxwell
Amy Jayne McKnight
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Biomarkers
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1517-5

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.