Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Chronic Kidney Disease | Research article

Uric acid regulates NLRP3/IL-1β signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K+ efflux

Authors: Wei Yin, Qiao-Ling Zhou, Sha-Xi OuYang, Ying Chen, Yu-Ting Gong, Yu-Mei Liang

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Chronic kidney disease (CKD) has been considered as a major health problem in the world. Increasing uric acid (UA) could induce vascular endothelial injury, which is closely related to microinflammation, oxidative stress, and disorders of lipids metabolism. However, the specific mechanism that UA induces vascular endothelial cells injury in early CKD remains unknown.

Methods

Human umbilical vein endothelial cells (HUVECs) were cultured and subjected to different concentrations of UA for different periods. Early CKD rat model with elevated serum UA was established. Western blotting and quantitative real-time PCR (qPCR) were applied for measuring protein and mRNA expression of different cytokines. The animals were sacrificed and blood samples were collected for measurement of creatinine, UA, IL-1β, TNF-α, and ICAM-1. Renal tissues were pathologically examined by periodic acid-Schiff (PAS) or hematoxylin-eosin (HE) staining.

Results

The expression of IL-1β, ICAM-1, NLRP3 complexes, and activation of NLRP3 inflammasome could be induced by UA, but the changes induced by UA were partially reversed by siRNA NLRP3 or caspase 1 inhibitor. Furthermore, we identified that UA regulated the activation of NLRP3 inflammasome by activating ROS and K+ efflux. In vivo results showed that UA caused the vascular endothelial injury by activating NLRP3/IL-1β pathway. While allopurinol could reduce UA level and may have protective effects on cardiovascular system.

Conclusions

UA could regulate NLRP3/IL-1β signaling pathway through ROS activation and K+ efflux and further induce vascular endothelial cells injury in early stages of CKD.
Literature
1.
go back to reference Qiu C, Huang S, Park J, Park Y, Ko YA, Seasock MJ, et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat Med. 2018;24(11):1721–31.CrossRef Qiu C, Huang S, Park J, Park Y, Ko YA, Seasock MJ, et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat Med. 2018;24(11):1721–31.CrossRef
2.
go back to reference Ko S, Venkatesan S, Nand K, Levidiotis V, Nelson C, Janus E. International statistical classification of diseases and related health problems coding underestimates the incidence and prevalence of acute kidney injury and chronic kidney disease in general medical patients. Intern Med J. 2018;48(3):310–5.CrossRef Ko S, Venkatesan S, Nand K, Levidiotis V, Nelson C, Janus E. International statistical classification of diseases and related health problems coding underestimates the incidence and prevalence of acute kidney injury and chronic kidney disease in general medical patients. Intern Med J. 2018;48(3):310–5.CrossRef
3.
go back to reference Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388–93.CrossRef Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388–93.CrossRef
4.
go back to reference Toyama T, Furuichi K, Shimizu M, Hara A, Iwata Y, Sakai N, et al. Relationship between serum uric acid levels and chronic kidney disease in a Japanese cohort with Normal or mildly reduced kidney function. PLoS One. 2015;10(9):e0137449.CrossRef Toyama T, Furuichi K, Shimizu M, Hara A, Iwata Y, Sakai N, et al. Relationship between serum uric acid levels and chronic kidney disease in a Japanese cohort with Normal or mildly reduced kidney function. PLoS One. 2015;10(9):e0137449.CrossRef
5.
go back to reference Liu WC, Hung CC, Chen SC, Yeh SM, Lin MY, Chiu YW, et al. Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin J Am Soc Nephrol. 2012;7(4):541–8.CrossRef Liu WC, Hung CC, Chen SC, Yeh SM, Lin MY, Chiu YW, et al. Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin J Am Soc Nephrol. 2012;7(4):541–8.CrossRef
6.
go back to reference Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53(5):796–803.CrossRef Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53(5):796–803.CrossRef
7.
go back to reference Suliman ME, Johnson RJ, Garcia-Lopez E, Qureshi AR, Molinaei H, Carrero JJ, et al. J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis. 2006;48(5):761–71.CrossRef Suliman ME, Johnson RJ, Garcia-Lopez E, Qureshi AR, Molinaei H, Carrero JJ, et al. J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis. 2006;48(5):761–71.CrossRef
8.
go back to reference Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.CrossRef Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.CrossRef
9.
go back to reference Kanbay M, Afsar B, Siriopol D, Unal HU, Karaman M, Saglam M, et al. Relevance of uric acid and asymmetric dimethylarginine for modeling cardiovascular risk prediction in chronic kidney disease patients. Int Urol Nephrol. 2016;48(7):1129–36.CrossRef Kanbay M, Afsar B, Siriopol D, Unal HU, Karaman M, Saglam M, et al. Relevance of uric acid and asymmetric dimethylarginine for modeling cardiovascular risk prediction in chronic kidney disease patients. Int Urol Nephrol. 2016;48(7):1129–36.CrossRef
10.
go back to reference Kuo KL, Hung SC, Lee TS, Tarng DC. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD. J Am Soc Nephrol. 2014;25(11):2596–606.CrossRef Kuo KL, Hung SC, Lee TS, Tarng DC. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD. J Am Soc Nephrol. 2014;25(11):2596–606.CrossRef
11.
go back to reference Liang WY, Zhu XY, Zhang JW, Feng XR, Wang YC, Liu ML. Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling. Nutr Metab Cardiovasc Dis. 2015;25(2):187–94.CrossRef Liang WY, Zhu XY, Zhang JW, Feng XR, Wang YC, Liu ML. Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling. Nutr Metab Cardiovasc Dis. 2015;25(2):187–94.CrossRef
12.
go back to reference Sanchez-Lozada LG, Lanaspa MA, Cristobal-Garcia M, Garcia-Arroyo F, Soto V, Cruz-Robles D, et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121(3–4):e71–8.CrossRef Sanchez-Lozada LG, Lanaspa MA, Cristobal-Garcia M, Garcia-Arroyo F, Soto V, Cruz-Robles D, et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121(3–4):e71–8.CrossRef
13.
go back to reference Zhou T, Xiang DK, Li SN, Yang LH, Gao LF, Feng C. MicroRNA-495 ameliorates cardiac microvascular endothelial cell injury and inflammatory reaction by suppressing the NLRP3 Inflammasome signaling pathway. Cell Physiol Biochem. 2018;49(2):798–815.CrossRef Zhou T, Xiang DK, Li SN, Yang LH, Gao LF, Feng C. MicroRNA-495 ameliorates cardiac microvascular endothelial cell injury and inflammatory reaction by suppressing the NLRP3 Inflammasome signaling pathway. Cell Physiol Biochem. 2018;49(2):798–815.CrossRef
14.
go back to reference Wan X, Xu C, Lin Y, Lu C, Li D, Sang J, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64(4):925–32.CrossRef Wan X, Xu C, Lin Y, Lu C, Li D, Sang J, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64(4):925–32.CrossRef
15.
go back to reference Gross CJ, Mishra R, Schneider KS, Medard G, Wettmarshausen J, Dittlein DC, et al. K(+) efflux-independent NLRP3 Inflammasome activation by small molecules targeting mitochondria. Immunity. 2016;45(4):761–73.CrossRef Gross CJ, Mishra R, Schneider KS, Medard G, Wettmarshausen J, Dittlein DC, et al. K(+) efflux-independent NLRP3 Inflammasome activation by small molecules targeting mitochondria. Immunity. 2016;45(4):761–73.CrossRef
16.
go back to reference Meng X, Fei D, Liu M, Yang S, Song N, Jiang L, et al. Carbon monoxide-releasing molecule-2 suppresses thrombomodulin and endothelial protein C receptor expression of human umbilical vein endothelial cells induced by lipopolysaccharide in vitro. Medicine (Baltimore). 2017;96(21):e6978.CrossRef Meng X, Fei D, Liu M, Yang S, Song N, Jiang L, et al. Carbon monoxide-releasing molecule-2 suppresses thrombomodulin and endothelial protein C receptor expression of human umbilical vein endothelial cells induced by lipopolysaccharide in vitro. Medicine (Baltimore). 2017;96(21):e6978.CrossRef
17.
go back to reference Bao X, Wang Y, Wei C, Zhang Q. Effects of uric acid on hearts of rats with chronic kidney disease. Am J Nephrol. 2014;40(4):308–14.CrossRef Bao X, Wang Y, Wei C, Zhang Q. Effects of uric acid on hearts of rats with chronic kidney disease. Am J Nephrol. 2014;40(4):308–14.CrossRef
18.
go back to reference Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013;99(11):759–66.CrossRef Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013;99(11):759–66.CrossRef
19.
go back to reference Kobayashi T, Nakagome K, Noguchi T, Kobayashi K, Ueda Y, Soma T, et al. Elevated uric acid and adenosine triphosphate concentrations in bronchoalveolar lavage fluid of eosinophilic pneumonia. Allergol Int. 2017;66S:S27–34.CrossRef Kobayashi T, Nakagome K, Noguchi T, Kobayashi K, Ueda Y, Soma T, et al. Elevated uric acid and adenosine triphosphate concentrations in bronchoalveolar lavage fluid of eosinophilic pneumonia. Allergol Int. 2017;66S:S27–34.CrossRef
20.
go back to reference Yuan H, Ma J, Li T, Han X. MiR-29b aggravates lipopolysaccharide-induced endothelial cells inflammatory damage by regulation of NF-kappaB and JNK signaling pathways. Biomed Pharmacother. 2018;99:451–61.CrossRef Yuan H, Ma J, Li T, Han X. MiR-29b aggravates lipopolysaccharide-induced endothelial cells inflammatory damage by regulation of NF-kappaB and JNK signaling pathways. Biomed Pharmacother. 2018;99:451–61.CrossRef
21.
go back to reference Ruan W, Xu JM, Li SB, Yuan LQ, Dai RP. Effects of down-regulation of microRNA-23a on TNF-alpha-induced endothelial cell apoptosis through caspase-dependent pathways. Cardiovasc Res. 2012;93(4):623–32.CrossRef Ruan W, Xu JM, Li SB, Yuan LQ, Dai RP. Effects of down-regulation of microRNA-23a on TNF-alpha-induced endothelial cell apoptosis through caspase-dependent pathways. Cardiovasc Res. 2012;93(4):623–32.CrossRef
22.
go back to reference Kim JK, Jin HS, Suh HW, Jo EK. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling. Immunol Cell Biol. 2017;95(7):584–92.CrossRef Kim JK, Jin HS, Suh HW, Jo EK. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling. Immunol Cell Biol. 2017;95(7):584–92.CrossRef
23.
go back to reference Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-oxide instigates NLRP3 Inflammasome activation and endothelial dysfunction. Cell Physiol Biochem. 2017;44(1):152–62.CrossRef Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-oxide instigates NLRP3 Inflammasome activation and endothelial dysfunction. Cell Physiol Biochem. 2017;44(1):152–62.CrossRef
24.
go back to reference Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 2012;492(7427):123–7.CrossRef Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 2012;492(7427):123–7.CrossRef
25.
go back to reference Zhang Y, Rong H, Zhang FX, Wu K, Mu L, Meng J, et al. A membrane potential- and Calpain-dependent reversal of Caspase-1 inhibition regulates canonical NLRP3 Inflammasome. Cell Rep. 2018;24(9):2356–69.CrossRef Zhang Y, Rong H, Zhang FX, Wu K, Mu L, Meng J, et al. A membrane potential- and Calpain-dependent reversal of Caspase-1 inhibition regulates canonical NLRP3 Inflammasome. Cell Rep. 2018;24(9):2356–69.CrossRef
26.
go back to reference Karki P, Seong C, Kim JE, Hur K, Shin SY, Lee JS, et al. Intracellular K(+) inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death Differ. 2007;14(12):2068–75.CrossRef Karki P, Seong C, Kim JE, Hur K, Shin SY, Lee JS, et al. Intracellular K(+) inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death Differ. 2007;14(12):2068–75.CrossRef
27.
go back to reference Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–5.CrossRef Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–5.CrossRef
28.
go back to reference Kim MJ, Ciani S, Schachtman DP. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant. 2010;3(2):420–7.CrossRef Kim MJ, Ciani S, Schachtman DP. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant. 2010;3(2):420–7.CrossRef
29.
go back to reference He L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, et al. Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L916–24.CrossRef He L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, et al. Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L916–24.CrossRef
30.
go back to reference Xia X, Lu B, Dong W, Yang B, Wang Y, Qin Q, et al. Atypical Gasdermin D and mixed lineage kinase domain-like protein leakage aggravates Tetrachlorobenzoquinone-induced nod-like receptor protein 3 Inflammasome activation. Chem Res Toxicol. 2018;31(12):1418–25.CrossRef Xia X, Lu B, Dong W, Yang B, Wang Y, Qin Q, et al. Atypical Gasdermin D and mixed lineage kinase domain-like protein leakage aggravates Tetrachlorobenzoquinone-induced nod-like receptor protein 3 Inflammasome activation. Chem Res Toxicol. 2018;31(12):1418–25.CrossRef
Metadata
Title
Uric acid regulates NLRP3/IL-1β signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K+ efflux
Authors
Wei Yin
Qiao-Ling Zhou
Sha-Xi OuYang
Ying Chen
Yu-Ting Gong
Yu-Mei Liang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1506-8

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue