Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Magnetic Resonance Imaging | Research article

Kidney and cystic volume imaging for disease presentation and progression in the cat autosomal dominant polycystic kidney disease large animal model

Authors: Yoshihiko Yu, Kate L. Shumway, Jodi S. Matheson, Marie E. Edwards, Timothy L. Kline, Leslie A. Lyons

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Approximately 30% of Persian cats have a c.10063C > A variant in polycystin 1 (PKD1) homolog causing autosomal dominant polycystic kidney disease (ADPKD). The variant is lethal in utero when in the homozygous state and is the only ADPKD variant known in cats. Affected cats have a wide range of progression and disease severity. However, cats are an overlooked biomedical model and have not been used to test therapeutics and diets that may support human clinical trials. To reinvigorate the cat as a large animal model for ADPKD, the efficacy of imaging modalities was evaluated and estimates of kidney and fractional cystic volumes (FCV) determined.

Methods

Three imaging modalities, ultrasonography, computed tomography (CT), and magnetic resonance imaging examined variation in disease presentation and disease progression in 11 felines with ADPKD. Imaging data was compared to well-known biomarkers for chronic kidney disease and glomerular filtration rate. Total kidney volume, total cystic volume, and FCV were determined for the first time in ADPKD cats. Two cats had follow-up examinations to evaluate progression.

Results

FCV measurements were feasible in cats. CT was a rapid and an efficient modality for evaluating therapeutic effects that cause alterations in kidney volume and/or FCV. Biomarkers, including glomerular filtration rate and creatinine, were not predictive for disease progression in feline ADPKD. The wide variation in cystic presentation suggested genetic modifiers likely influence disease progression in cats. All imaging modalities had comparable resolutions to those acquired for humans, and software used for kidney and cystic volume estimates in humans proved useful for cats.

Conclusions

Routine imaging protocols used in veterinary medicine are as robust and efficient for evaluating ADPKD in cats as those used in human medicine. Cats can be identified as fast and slow progressors, thus, could assist with genetic modifier discovery. Software to measure kidney and cystic volume in human ADPKD kidney studies is applicable and efficient in cats. The longer life and larger kidney size span than rodents, similar genetics, disease presentation and progression as humans suggest cats are an efficient biomedical model for evaluation of ADPKD therapeutics.
Appendix
Available only for authorised users
Literature
2.
go back to reference Chapman AB, Devuyst O, Eckardt KU, et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2015;88(1):17–27.PubMedPubMedCentralCrossRef Chapman AB, Devuyst O, Eckardt KU, et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2015;88(1):17–27.PubMedPubMedCentralCrossRef
3.
go back to reference Mikolajczyk AE, Te HS, Chapman AB. Gastrointestinal manifestations of autosomal-dominant polycystic kidney disease. Clin Gastroenterol Hepatol. 2017;15(1):17–24.PubMedCrossRef Mikolajczyk AE, Te HS, Chapman AB. Gastrointestinal manifestations of autosomal-dominant polycystic kidney disease. Clin Gastroenterol Hepatol. 2017;15(1):17–24.PubMedCrossRef
4.
go back to reference Spithoven EM, Kramer A, Meijer E, et al. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival--an analysis of data from the ERA-EDTA registry. Nephrol Dial Transplant. 2014;29(Suppl 4):iv15–25.PubMedCrossRef Spithoven EM, Kramer A, Meijer E, et al. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival--an analysis of data from the ERA-EDTA registry. Nephrol Dial Transplant. 2014;29(Suppl 4):iv15–25.PubMedCrossRef
5.
6.
go back to reference Harris PC, Bae KT, Rossetti S, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006;17(11):3013–9.PubMedCrossRef Harris PC, Bae KT, Rossetti S, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006;17(11):3013–9.PubMedCrossRef
7.
go back to reference Heyer CM, Sundsbak JL, Abebe KZ, et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27(9):2872–84.PubMedPubMedCentralCrossRef Heyer CM, Sundsbak JL, Abebe KZ, et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27(9):2872–84.PubMedPubMedCentralCrossRef
9.
go back to reference Hughes J, Ward CJ, Peral B, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–60.PubMedCrossRef Hughes J, Ward CJ, Peral B, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–60.PubMedCrossRef
11.
go back to reference Germino GG. Autosomal dominant polycystic kidney disease: a two-hit model. Hosp Pract (1995). 1997;32(3):81–2 85–88, 91–82 passim.CrossRef Germino GG. Autosomal dominant polycystic kidney disease: a two-hit model. Hosp Pract (1995). 1997;32(3):81–2 85–88, 91–82 passim.CrossRef
12.
go back to reference Barrs VR, Gunew M, Foster SF, et al. Prevalence of autosomal dominant polycystic kidney disease in Persian cats and related-breeds in Sydney and Brisbane. Aust Vet J. 2001;79(4):257–9.PubMedCrossRef Barrs VR, Gunew M, Foster SF, et al. Prevalence of autosomal dominant polycystic kidney disease in Persian cats and related-breeds in Sydney and Brisbane. Aust Vet J. 2001;79(4):257–9.PubMedCrossRef
13.
go back to reference Barthez PY, Rivier P, Begon D. Prevalence of polycystic kidney disease in Persian and Persian related cats in France. J Feline Med Surg. 2003;5(6):345–7.PubMedCrossRef Barthez PY, Rivier P, Begon D. Prevalence of polycystic kidney disease in Persian and Persian related cats in France. J Feline Med Surg. 2003;5(6):345–7.PubMedCrossRef
14.
go back to reference Biller DS, DiBartola SP, Eaton KA, et al. Inheritance of polycystic kidney disease in Persian cats. J Hered. 1996;87(1):1–5.PubMedCrossRef Biller DS, DiBartola SP, Eaton KA, et al. Inheritance of polycystic kidney disease in Persian cats. J Hered. 1996;87(1):1–5.PubMedCrossRef
15.
go back to reference Cannon MJ, MacKay AD, Barr FJ, et al. Prevalence of polycystic kidney disease in Persian cats in the United Kingdom. Vet Rec. 2001;149(14):409–11.PubMedCrossRef Cannon MJ, MacKay AD, Barr FJ, et al. Prevalence of polycystic kidney disease in Persian cats in the United Kingdom. Vet Rec. 2001;149(14):409–11.PubMedCrossRef
16.
go back to reference Eaton KA, Biller DS, DiBartola SP, et al. Autosomal dominant polycystic kidney disease in Persian and Persian-cross cats. Vet Pathol. 1997;34(2):117–26.PubMedCrossRef Eaton KA, Biller DS, DiBartola SP, et al. Autosomal dominant polycystic kidney disease in Persian and Persian-cross cats. Vet Pathol. 1997;34(2):117–26.PubMedCrossRef
17.
go back to reference Lyons LA, Biller DS, Erdman CA, et al. Feline polycystic kidney disease mutation identified in PKD1. J Am Soc Nephrol. 2004;15(10):2548–55.PubMedCrossRef Lyons LA, Biller DS, Erdman CA, et al. Feline polycystic kidney disease mutation identified in PKD1. J Am Soc Nephrol. 2004;15(10):2548–55.PubMedCrossRef
18.
go back to reference Lee YJ, Chen HY, Hsu WL, et al. Diagnosis of feline polycystic kidney disease by a combination of ultrasonographic examination and PKD1 gene analysis. Vet Rec. 2010;167(16):614–8.PubMedCrossRef Lee YJ, Chen HY, Hsu WL, et al. Diagnosis of feline polycystic kidney disease by a combination of ultrasonographic examination and PKD1 gene analysis. Vet Rec. 2010;167(16):614–8.PubMedCrossRef
19.
go back to reference Nivy R, Lyons LA, Aroch I, Segev G. Polycystic kidney disease in four British shorthair cats with successful treatment of bacterial cyst infection. J Small Anim Pract. 2015;56(9):585–9.PubMedCrossRef Nivy R, Lyons LA, Aroch I, Segev G. Polycystic kidney disease in four British shorthair cats with successful treatment of bacterial cyst infection. J Small Anim Pract. 2015;56(9):585–9.PubMedCrossRef
20.
go back to reference Bonazzi M, Volta A, Gnudi G, et al. Prevalence of the polycystic kidney disease and renal and urinary bladder ultrasonographic abnormalities in Persian and exotic shorthair cats in Italy. J Feline Med Surg. 2007;9(5):387–91.PubMedCrossRef Bonazzi M, Volta A, Gnudi G, et al. Prevalence of the polycystic kidney disease and renal and urinary bladder ultrasonographic abnormalities in Persian and exotic shorthair cats in Italy. J Feline Med Surg. 2007;9(5):387–91.PubMedCrossRef
21.
go back to reference Pedersen KM, Pedersen HD, Haggstrom J, et al. Increased mean arterial pressure and aldosterone-to-renin ratio in Persian cats with polycystic kidney disease. J Vet Intern Med. 2003;17(1):21–7.PubMedCrossRef Pedersen KM, Pedersen HD, Haggstrom J, et al. Increased mean arterial pressure and aldosterone-to-renin ratio in Persian cats with polycystic kidney disease. J Vet Intern Med. 2003;17(1):21–7.PubMedCrossRef
22.
go back to reference Littman MP. Genetic basis for urinary tract diseases. In: Elliott J, Grauer GF, Westropp JL, editors. BSAVA manual of canine and feline nephrology and urology. Edn. Gloucester: British Small Animal Veterinary Association; 2017. p. 172–84.CrossRef Littman MP. Genetic basis for urinary tract diseases. In: Elliott J, Grauer GF, Westropp JL, editors. BSAVA manual of canine and feline nephrology and urology. Edn. Gloucester: British Small Animal Veterinary Association; 2017. p. 172–84.CrossRef
23.
go back to reference Bae KT, Grantham JJ. Imaging for the prognosis of autosomal dominant polycystic kidney disease. Nat Rev Nephrol. 2010;6(2):96–106.PubMedCrossRef Bae KT, Grantham JJ. Imaging for the prognosis of autosomal dominant polycystic kidney disease. Nat Rev Nephrol. 2010;6(2):96–106.PubMedCrossRef
24.
go back to reference Wills SJ, Barrett EL, Barr FJ, et al. Evaluation of the repeatability of ultrasound scanning for detection of feline polycystic kidney disease. J Feline Med Surg. 2009;11(12):993–6.PubMedCrossRef Wills SJ, Barrett EL, Barr FJ, et al. Evaluation of the repeatability of ultrasound scanning for detection of feline polycystic kidney disease. J Feline Med Surg. 2009;11(12):993–6.PubMedCrossRef
25.
go back to reference Irazabal MV, Mishra PK, Torres VE, Macura SI. Use of ultra-high field MRI in small rodent models of polycystic kidney disease for in vivo phenotyping and drug monitoring. J Vis Exp. 2015;100:e52757. Irazabal MV, Mishra PK, Torres VE, Macura SI. Use of ultra-high field MRI in small rodent models of polycystic kidney disease for in vivo phenotyping and drug monitoring. J Vis Exp. 2015;100:e52757.
26.
go back to reference Hall JA, Yerramilli M, Obare E, et al. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J Vet Intern Med. 2014;28(6):1676–83.PubMedPubMedCentralCrossRef Hall JA, Yerramilli M, Obare E, et al. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J Vet Intern Med. 2014;28(6):1676–83.PubMedPubMedCentralCrossRef
27.
go back to reference Grahn RA, Biller DS, Young AE, et al. Genetic testing for feline polycystic kidney disease. Anim Genet. 2004;35(6):503–4.PubMedCrossRef Grahn RA, Biller DS, Young AE, et al. Genetic testing for feline polycystic kidney disease. Anim Genet. 2004;35(6):503–4.PubMedCrossRef
28.
go back to reference Nyland TG, Fisher PE, Gregory CR, Wisner ER. Ultrasonographic evaluation of renal size in dogs with acute allograft rejection. Vet Radiol Ultrasound. 1997;38(1):55–61.PubMedCrossRef Nyland TG, Fisher PE, Gregory CR, Wisner ER. Ultrasonographic evaluation of renal size in dogs with acute allograft rejection. Vet Radiol Ultrasound. 1997;38(1):55–61.PubMedCrossRef
29.
go back to reference Daniel GB, Mitchell SK, Mawby D, et al. Renal nuclear medicine: a review. Vet Radiol Ultrasound. 1999;40(6):572–87.PubMedCrossRef Daniel GB, Mitchell SK, Mawby D, et al. Renal nuclear medicine: a review. Vet Radiol Ultrasound. 1999;40(6):572–87.PubMedCrossRef
30.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.PubMedCrossRef
31.
go back to reference Kline TL, Edwards ME, Korfiatis P, et al. Semiautomated segmentation of polycystic kidneys in T2-weighted MR images. Am J Roentgen. 2016;207(3):605-13. Kline TL, Edwards ME, Korfiatis P, et al. Semiautomated segmentation of polycystic kidneys in T2-weighted MR images. Am J Roentgen. 2016;207(3):605-13. 
32.
go back to reference Reichle JK, DiBartola SP, Leveille R. Renal ultrasonographic and computed tomographic appearance, volume, and function of cats with autosomal dominant polycystic kidney disease. Vet Radiol Ultrasound. 2002;43(4):368–73.PubMedCrossRef Reichle JK, DiBartola SP, Leveille R. Renal ultrasonographic and computed tomographic appearance, volume, and function of cats with autosomal dominant polycystic kidney disease. Vet Radiol Ultrasound. 2002;43(4):368–73.PubMedCrossRef
33.
go back to reference Cozzi B, Ballarin C, Mantovani R, Rota A. Aging and veterinary Care of Cats, dogs, and horses through the Records of Three University Veterinary Hospitals. Front Vet Sci. 2017;4:14.PubMedPubMedCentralCrossRef Cozzi B, Ballarin C, Mantovani R, Rota A. Aging and veterinary Care of Cats, dogs, and horses through the Records of Three University Veterinary Hospitals. Front Vet Sci. 2017;4:14.PubMedPubMedCentralCrossRef
34.
go back to reference O'Neill DG, Church DB, McGreevy PD, et al. Longevity and mortality of cats attending primary care veterinary practices in England. J Feline Med Surg. 2015;17(2):125-33. O'Neill DG, Church DB, McGreevy PD, et al. Longevity and mortality of cats attending primary care veterinary practices in England. J Feline Med Surg. 2015;17(2):125-33. 
35.
go back to reference Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359(14):1477-85. Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359(14):1477-85.
36.
go back to reference Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287–301.PubMedCrossRef Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287–301.PubMedCrossRef
38.
go back to reference Alam A, Dahl NK, Lipschutz JH, et al. Total kidney volume in autosomal dominant polycystic kidney disease: a biomarker of disease progression and therapeutic efficacy. Am J Kidney Dis. 2015;66(4):564–76.PubMedCrossRef Alam A, Dahl NK, Lipschutz JH, et al. Total kidney volume in autosomal dominant polycystic kidney disease: a biomarker of disease progression and therapeutic efficacy. Am J Kidney Dis. 2015;66(4):564–76.PubMedCrossRef
39.
go back to reference Torres VE, Higashihara E, Devuyst O, et al. Effect of Tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin J Am Soc Nephrol. 2016;11(5):803–11.PubMedPubMedCentralCrossRef Torres VE, Higashihara E, Devuyst O, et al. Effect of Tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin J Am Soc Nephrol. 2016;11(5):803–11.PubMedPubMedCentralCrossRef
40.
go back to reference Mai J, Lee VW, Lopez-Vargas P, et al. KHA-CARI autosomal dominant polycystic kidney disease guideline: monitoring disease progression. Semin Nephrol. 2015;35(6):565–571.e18. Mai J, Lee VW, Lopez-Vargas P, et al. KHA-CARI autosomal dominant polycystic kidney disease guideline: monitoring disease progression. Semin Nephrol. 2015;35(6):565–571.e18.
41.
go back to reference Tyson R, Logsdon SA, Werre SR, Daniel GB. Estimation of feline renal volume using computed tomography and ultrasound. Vet Radiol Ultrasound. 2013;54(2):127–32.PubMedCrossRef Tyson R, Logsdon SA, Werre SR, Daniel GB. Estimation of feline renal volume using computed tomography and ultrasound. Vet Radiol Ultrasound. 2013;54(2):127–32.PubMedCrossRef
42.
go back to reference Grantham JJ, Torres VE, Chapman AB, et al. Volume Progression in Polycystic Kidney Disease. N Engl J Med. 2006;354(20):2122-30. Grantham JJ, Torres VE, Chapman AB, et al. Volume Progression in Polycystic Kidney Disease. N Engl J Med. 2006;354(20):2122-30.
43.
go back to reference Milutinovic J, Rust PF, Fialkow PJ, et al. Intrafamilial phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1992;19(5):465–72.PubMedCrossRef Milutinovic J, Rust PF, Fialkow PJ, et al. Intrafamilial phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1992;19(5):465–72.PubMedCrossRef
44.
go back to reference Rossetti S, Burton S, Strmecki L, et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severityof renal disease. J Am Soc Nephrol. 2002;13(5):1230-7. Rossetti S, Burton S, Strmecki L, et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severityof renal disease. J Am Soc Nephrol. 2002;13(5):1230-7.
45.
go back to reference Vite CH, Bagel JH, Swain GP, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-pick type C1 disease. Sci Transl Med. 2015;7(276):276ra226.CrossRef Vite CH, Bagel JH, Swain GP, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-pick type C1 disease. Sci Transl Med. 2015;7(276):276ra226.CrossRef
46.
go back to reference Vite CH, McGowan JC, Niogi SN, et al. Effective gene therapy for an inherited CNS disease in a large animal model. Ann Neurol. 2005;57(3):355–64.PubMedCrossRef Vite CH, McGowan JC, Niogi SN, et al. Effective gene therapy for an inherited CNS disease in a large animal model. Ann Neurol. 2005;57(3):355–64.PubMedCrossRef
47.
go back to reference Happe H, Peters DJ. Translational research in ADPKD: lessons from animal models. Nat Rev Nephrol. 2014;10(10):587–601.PubMedCrossRef Happe H, Peters DJ. Translational research in ADPKD: lessons from animal models. Nat Rev Nephrol. 2014;10(10):587–601.PubMedCrossRef
48.
go back to reference Pei Y, Lan Z, Wang K, et al. A missense mutation in PKD1 attenuates the severity of renal disease. Kidney Int. 2012;81(4):412–7.PubMedCrossRef Pei Y, Lan Z, Wang K, et al. A missense mutation in PKD1 attenuates the severity of renal disease. Kidney Int. 2012;81(4):412–7.PubMedCrossRef
49.
go back to reference Wu G, Tian X, Nishimura S, et al. Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet. 2002;11(16):1845–54.PubMedCrossRef Wu G, Tian X, Nishimura S, et al. Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet. 2002;11(16):1845–54.PubMedCrossRef
50.
go back to reference Bergmann C, von Bothmer J, Ortiz Bruchle N, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22(11):2047–56.PubMedPubMedCentralCrossRef Bergmann C, von Bothmer J, Ortiz Bruchle N, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22(11):2047–56.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Gansevoort RT, Arici M, Benzing T, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and European renal best practice. Nephrol Dial Transplant. 2016;31(3):337–48.PubMedPubMedCentralCrossRef Gansevoort RT, Arici M, Benzing T, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and European renal best practice. Nephrol Dial Transplant. 2016;31(3):337–48.PubMedPubMedCentralCrossRef
53.
go back to reference Soroka S, Alam A, Bevilacqua M, et al. Assessing risk of disease progression and pharmacological Management of Autosomal Dominant Polycystic Kidney Disease: a Canadian expert consensus. Can J Kidney Health Dis. 2017;4:2054358117695784.PubMedPubMedCentralCrossRef Soroka S, Alam A, Bevilacqua M, et al. Assessing risk of disease progression and pharmacological Management of Autosomal Dominant Polycystic Kidney Disease: a Canadian expert consensus. Can J Kidney Health Dis. 2017;4:2054358117695784.PubMedPubMedCentralCrossRef
Metadata
Title
Kidney and cystic volume imaging for disease presentation and progression in the cat autosomal dominant polycystic kidney disease large animal model
Authors
Yoshihiko Yu
Kate L. Shumway
Jodi S. Matheson
Marie E. Edwards
Timothy L. Kline
Leslie A. Lyons
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1448-1

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.