Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Acute Kidney Injury | Research article

Impact of blood glucose levels on the accuracy of urinary N-acety-β-D-glucosaminidase for acute kidney injury detection in critically ill adults: a multicenter, prospective, observational study

Authors: Lin Wang, Yujun Deng, Yiling Zhai, Feng Xu, Jinghua Li, Danqing Zhang, Lu Gao, Yating Hou, Xin OuYang, Linhui Hu, Jie Yuan, Heng Ye, Ruibin Chi, Chunbo Chen

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

The performance of urinary N-acetyl-β-D-glucosaminidase (uNAG) for the detection of acute kidney injury (AKI) was controversial. uNAG is positively correlated with blood glucose levels. Hyperglycemia is common in the critically ill adults. The influence of blood glucose levels on the accuracy of uNAG in AKI detection has not yet been reported. The present study evaluated the effect of blood glucose levels on the diagnostic accuracy of uNAG to detect AKI.

Methods

A total of 1585 critically ill adults in intensive care units at three university hospitals were recruited in this prospective observational study. uNAG, serum glucose, and glycosylated hemoglobin (HbA1c) were measured at ICU admission. Patients were categorized based on the history of diabetes and blood glucose levels. The performance of uNAG to detect AKI in different groups was assessed by the area under the receiver operator characteristic curve.

Results

Four hundred and twelve patients developed AKI, of which 109 patients were severe AKI. uNAG was significantly correlated with the levels of serum glucose (P < 0.001) and HbA1c (P < 0.001). After stratification based on the serum glucose levels, no significant difference was observed in the AUC of uNAG in detecting AKI between any two groups (P > 0.05). Stratification for stress hyperglycemic demonstrated similar results.However, among non-diabetic patients, the optimal cut-off value of uNAG for detecting AKI was higher in stress hyperglycemic patients as compared to those without stress hyperglycemia.

Conclusions

The blood glucose levels did not significantly affect the performance of uNAG for AKI detection in critically ill adults. However, the optimal cut-off value of uNAG to detect AKIwas affected by stress hyperglycemia in non-diabetic patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yamashita T, Doi K, Hamasaki Y, et al. Evaluation of urinary tissue inhibitor of metalloproteinase-2 in acute kidney injury: a prospective observational study. Crit Care. 2014;18:716.CrossRef Yamashita T, Doi K, Hamasaki Y, et al. Evaluation of urinary tissue inhibitor of metalloproteinase-2 in acute kidney injury: a prospective observational study. Crit Care. 2014;18:716.CrossRef
2.
go back to reference Deng Y, Yuan J, Chi R, et al. The incidence, risk factors and outcomes of postoperative acute kidney injury in neurosurgical critically ill patients. Sci Rep. 2017;7:4245.CrossRef Deng Y, Yuan J, Chi R, et al. The incidence, risk factors and outcomes of postoperative acute kidney injury in neurosurgical critically ill patients. Sci Rep. 2017;7:4245.CrossRef
3.
go back to reference Zhang D, Gao L, Ye H, et al. Impact of thyroid function on cystatin C in detecting acute kidney injury: a prospective, observational study. BMC Nephrol. 2019;20:41.CrossRef Zhang D, Gao L, Ye H, et al. Impact of thyroid function on cystatin C in detecting acute kidney injury: a prospective, observational study. BMC Nephrol. 2019;20:41.CrossRef
4.
go back to reference Thakar CV, Christianson A, Freyberg R, et al. Incidence and outcomes of acute kidney injury in intensive care units: a veterans administration study. Crit Care Med. 2009;37:2552–8.CrossRef Thakar CV, Christianson A, Freyberg R, et al. Incidence and outcomes of acute kidney injury in intensive care units: a veterans administration study. Crit Care Med. 2009;37:2552–8.CrossRef
5.
go back to reference Bagshaw SM, Laupland KB, Doig CJ, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care. 2005;9:R700–9.CrossRef Bagshaw SM, Laupland KB, Doig CJ, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care. 2005;9:R700–9.CrossRef
6.
go back to reference Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.CrossRef Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.CrossRef
7.
go back to reference Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10:R73.CrossRef Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10:R73.CrossRef
8.
go back to reference Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults. Clin J Am Soc Nephrol. 2015;10:1510–8.CrossRef Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults. Clin J Am Soc Nephrol. 2015;10:1510–8.CrossRef
9.
go back to reference Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. Jama. 2016;315:2190–9.CrossRef Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. Jama. 2016;315:2190–9.CrossRef
10.
go back to reference Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20:299.CrossRef Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20:299.CrossRef
11.
go back to reference Vaidya VS, Waikar SS, Ferguson MA, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1:200–8.CrossRef Vaidya VS, Waikar SS, Ferguson MA, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1:200–8.CrossRef
12.
go back to reference Cheng B, Jin Y, Liu G, et al. Urinary N-acetyl-beta-D-glucosaminidase as an early marker for acute kidney injury in full-term newborns with neonatal hyperbilirubinemia. Dis Markers. 2014;2014:315843.CrossRef Cheng B, Jin Y, Liu G, et al. Urinary N-acetyl-beta-D-glucosaminidase as an early marker for acute kidney injury in full-term newborns with neonatal hyperbilirubinemia. Dis Markers. 2014;2014:315843.CrossRef
13.
go back to reference Doi K, Negishi K, Ishizu T, et al. Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med. 2011;39:2464–9.CrossRef Doi K, Negishi K, Ishizu T, et al. Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med. 2011;39:2464–9.CrossRef
14.
go back to reference Peng ZY. The biomarkers for acute kidney injury: a clear road ahead? J Transl Int Med. 2016;4:95–8.CrossRef Peng ZY. The biomarkers for acute kidney injury: a clear road ahead? J Transl Int Med. 2016;4:95–8.CrossRef
15.
go back to reference Jung K, Hempel A, Grutzmann KD, et al. Age-dependent excretion of alanine aminopeptidase, alkaline phosphatase, gamma-glutamyltransferase and N-acetyl-beta-D-glucosaminidase in human urine. Enzyme. 1990;43:10–6.CrossRef Jung K, Hempel A, Grutzmann KD, et al. Age-dependent excretion of alanine aminopeptidase, alkaline phosphatase, gamma-glutamyltransferase and N-acetyl-beta-D-glucosaminidase in human urine. Enzyme. 1990;43:10–6.CrossRef
16.
go back to reference Doi K, Noiri E, Nangaku M, et al. Repulsive guidance cue semaphorin 3A in urine predicts the progression of acute kidney injury in adult patients from a mixed intensive care unit. Nephrol Dial Transplant. 2014;29:73–80.CrossRef Doi K, Noiri E, Nangaku M, et al. Repulsive guidance cue semaphorin 3A in urine predicts the progression of acute kidney injury in adult patients from a mixed intensive care unit. Nephrol Dial Transplant. 2014;29:73–80.CrossRef
17.
go back to reference Kim SR, Lee YH, Lee SG, et al. Urinary N-acetyl-beta-D-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes. Medicine. 2016;95:e4114.CrossRef Kim SR, Lee YH, Lee SG, et al. Urinary N-acetyl-beta-D-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes. Medicine. 2016;95:e4114.CrossRef
18.
go back to reference Ellis EN, Brouhard BH, Lagrone L, et al. Urinary excretion of N-acetyl-beta-D-glucosaminidase in children with type I diabetes mellitus. Diabetes Care. 1983;6:251–5.CrossRef Ellis EN, Brouhard BH, Lagrone L, et al. Urinary excretion of N-acetyl-beta-D-glucosaminidase in children with type I diabetes mellitus. Diabetes Care. 1983;6:251–5.CrossRef
19.
go back to reference Ouchi M, Suzuki T, Hashimoto M, et al. Urinary N-acetyl-beta-D-glucosaminidase levels are positively correlated with 2-hr plasma glucose levels during oral glucose tolerance testing in prediabetes. J Clin Lab Anal. 2012;26:473–80.CrossRef Ouchi M, Suzuki T, Hashimoto M, et al. Urinary N-acetyl-beta-D-glucosaminidase levels are positively correlated with 2-hr plasma glucose levels during oral glucose tolerance testing in prediabetes. J Clin Lab Anal. 2012;26:473–80.CrossRef
20.
go back to reference Brouhard BHLL, Travis LB, Pollard TG. Response of urinary N-acetyl-beta-D-glucosaminidase to rapid decreases in blood glucose. Clin Chim Acta. 1984;140(2):197–202.CrossRef Brouhard BHLL, Travis LB, Pollard TG. Response of urinary N-acetyl-beta-D-glucosaminidase to rapid decreases in blood glucose. Clin Chim Acta. 1984;140(2):197–202.CrossRef
21.
go back to reference Naohito Ishii ZO, Aoki Y, Saruta T, Suga T. Effects of renal sorbitol accumulation on urinary excretion of enzymes in hyperglycaemic rat. Ann Clin Biochem. 2001;38:391–8.CrossRef Naohito Ishii ZO, Aoki Y, Saruta T, Suga T. Effects of renal sorbitol accumulation on urinary excretion of enzymes in hyperglycaemic rat. Ann Clin Biochem. 2001;38:391–8.CrossRef
22.
go back to reference Smith FG, Sheehy AM, Vincent JL, et al. Critical illness-induced dysglycaemia: diabetes and beyond. Crit Care. 2010;14:327.CrossRef Smith FG, Sheehy AM, Vincent JL, et al. Critical illness-induced dysglycaemia: diabetes and beyond. Crit Care. 2010;14:327.CrossRef
23.
go back to reference Plummer MP, Bellomo R, Cousins CE, et al. Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia with mortality. Intensive Care Med. 2014;40:973–80.CrossRef Plummer MP, Bellomo R, Cousins CE, et al. Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia with mortality. Intensive Care Med. 2014;40:973–80.CrossRef
24.
go back to reference von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147:573–7.CrossRef von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147:573–7.CrossRef
25.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, et al. Toward complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Acad Radiol. 2003;10:664–9.CrossRef Bossuyt PM, Reitsma JB, Bruns DE, et al. Toward complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Acad Radiol. 2003;10:664–9.CrossRef
26.
go back to reference Levey AGT, Kusek J, Beck G. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2000;11:A0828. Levey AGT, Kusek J, Beck G. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2000;11:A0828.
27.
go back to reference Kidney Disease Improving Global Outcomes (KDIGO). Acute Kidney Injury Work Group KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.CrossRef Kidney Disease Improving Global Outcomes (KDIGO). Acute Kidney Injury Work Group KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.CrossRef
28.
go back to reference Deng Y, Chi R, Chen S, et al. Evaluation of clinically available renal biomarkers in critically ill adults: a prospective multicenter observational study. Crit Care. 2017;21:46.CrossRef Deng Y, Chi R, Chen S, et al. Evaluation of clinically available renal biomarkers in critically ill adults: a prospective multicenter observational study. Crit Care. 2017;21:46.CrossRef
29.
go back to reference Stolker JM, McCullough PA, Rao S, et al. Pre-procedural glucose levels and the risk for contrast-induced acute kidney injury in patients undergoing coronary angiography. J Am Coll Cardiol. 2010;55:1433–40.CrossRef Stolker JM, McCullough PA, Rao S, et al. Pre-procedural glucose levels and the risk for contrast-induced acute kidney injury in patients undergoing coronary angiography. J Am Coll Cardiol. 2010;55:1433–40.CrossRef
30.
go back to reference Gillett MJ. International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care. 2009;32(7):1327–34 The Clinical biochemist Reviews 2009; 30: 197–200.CrossRef Gillett MJ. International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care. 2009;32(7):1327–34 The Clinical biochemist Reviews 2009; 30: 197–200.CrossRef
31.
go back to reference Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet (London, England). 2009;373:1798–807.CrossRef Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet (London, England). 2009;373:1798–807.CrossRef
32.
go back to reference Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.CrossRef Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.CrossRef
33.
go back to reference Obuchowski NA. Prospective studies of diagnostic test accuracy when disease prevalence is low. Biostatistics. 2002;3:477–92.CrossRef Obuchowski NA. Prospective studies of diagnostic test accuracy when disease prevalence is low. Biostatistics. 2002;3:477–92.CrossRef
34.
go back to reference Li J, Fine J. On sample size for sensitivity and specificity in prospective diagnostic accuracy studies. Stat Med. 2004;23:2537–50.CrossRef Li J, Fine J. On sample size for sensitivity and specificity in prospective diagnostic accuracy studies. Stat Med. 2004;23:2537–50.CrossRef
35.
go back to reference Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–43.CrossRef Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–43.CrossRef
36.
go back to reference Sprenkle P, Russo P. Molecular markers for ischemia, do we have something better then creatinine and glomerular filtration rate? Arch Esp Urol. 2013;66:99–114.PubMed Sprenkle P, Russo P. Molecular markers for ischemia, do we have something better then creatinine and glomerular filtration rate? Arch Esp Urol. 2013;66:99–114.PubMed
37.
go back to reference Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18:904–12.CrossRef Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18:904–12.CrossRef
38.
go back to reference Price RG. The role of NAG (N-acetyl-beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol. 1992;38(Suppl 1):S14–9.PubMed Price RG. The role of NAG (N-acetyl-beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol. 1992;38(Suppl 1):S14–9.PubMed
39.
go back to reference Skalova S. The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Med (Hradec Kralove). 2005;48:75–80.CrossRef Skalova S. The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Med (Hradec Kralove). 2005;48:75–80.CrossRef
40.
go back to reference Csathy L, Pocsi I. Urinary N-acetyl-beta-D-glucosaminidase determination in newborns and children: methods and diagnostic applications. Eur J Clin Chem Clin Biochem. 1995;33:575–87.PubMed Csathy L, Pocsi I. Urinary N-acetyl-beta-D-glucosaminidase determination in newborns and children: methods and diagnostic applications. Eur J Clin Chem Clin Biochem. 1995;33:575–87.PubMed
41.
go back to reference Hsiao PH, Tsai WS, Tsai WY, et al. Urinary N-acetyl-beta-D-glucosaminidase activity in children with insulin-dependent diabetes mellitus. Am J Nephrol. 1996;16:300–3.CrossRef Hsiao PH, Tsai WS, Tsai WY, et al. Urinary N-acetyl-beta-D-glucosaminidase activity in children with insulin-dependent diabetes mellitus. Am J Nephrol. 1996;16:300–3.CrossRef
42.
go back to reference Kordonouri O, Hartmann R, Muller C, et al. Predictive value of tubular markers for the development of microalbuminuria in adolescents with diabetes. Horm Res. 1998;50(Suppl 1):23–7.PubMed Kordonouri O, Hartmann R, Muller C, et al. Predictive value of tubular markers for the development of microalbuminuria in adolescents with diabetes. Horm Res. 1998;50(Suppl 1):23–7.PubMed
43.
go back to reference Mungan N, Yuksel B, Bakman M, et al. Urinary N-acetyl-beta-D-glucosaminidase activity in type I diabetes mellitus. Indian Pediatr. 2003;40:410–4.PubMed Mungan N, Yuksel B, Bakman M, et al. Urinary N-acetyl-beta-D-glucosaminidase activity in type I diabetes mellitus. Indian Pediatr. 2003;40:410–4.PubMed
44.
go back to reference Oezkur M, Wagner M, Weismann D, et al. Chronic hyperglycemia is associated with acute kidney injury in patients undergoing CABG surgery--a cohort study. BMC Cardiovasc Disord. 2015;15:41.CrossRef Oezkur M, Wagner M, Weismann D, et al. Chronic hyperglycemia is associated with acute kidney injury in patients undergoing CABG surgery--a cohort study. BMC Cardiovasc Disord. 2015;15:41.CrossRef
45.
go back to reference McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute Dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:13–29.CrossRef McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute Dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:13–29.CrossRef
46.
go back to reference Han WK, Wagener G, Zhu Y, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82.CrossRef Han WK, Wagener G, Zhu Y, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82.CrossRef
Metadata
Title
Impact of blood glucose levels on the accuracy of urinary N-acety-β-D-glucosaminidase for acute kidney injury detection in critically ill adults: a multicenter, prospective, observational study
Authors
Lin Wang
Yujun Deng
Yiling Zhai
Feng Xu
Jinghua Li
Danqing Zhang
Lu Gao
Yating Hou
Xin OuYang
Linhui Hu
Jie Yuan
Heng Ye
Ruibin Chi
Chunbo Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1381-3

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue