Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Chronic Kidney Disease | Research article

Urinary angiostatin: a novel biomarker of kidney disease associated with disease severity and progression

Authors: Yuan-Yuan Xia, Ru Bu, Guang-Yan Cai, Xue-Guang Zhang, Shu-Wei Duan, Jie Wu, Di Wu, Xiang-Mei Chen

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

This study aimed to evaluate the value of urinary angiostatin levels for assessing disease severity and progression of IgA nephropathy (IgAN).

Methods

Urinary angiostatin was identified as one of the distinct proteins in samples of patients with IgAN analyzed by Raybiotech protein array, and further confirmed by enzyme-linked immunosorbent assay (ELISA).

Results

Urinary angiostatin levels were significantly higher in IgAN patients than that in healthy controls (HC) subjects and lower than in disease controls (DC) patients. The concentrations of angiostatin in urine normalized to urinary creatinine (angiostatin/Cr) were positively associated with proteinuria level. With advancing chronic kidney disease (CKD) stage, urinary angiostatin/Cr levels were gradually increased. Urinary angiostatin/Cr levels in patients with Lee’s grade IV–V were significantly higher than those in Lee’s grade I–II and III. We further compared urinary angiostatin/Cr levels by using Oxford classification and found the expression in patients with mesangial proliferative score 1(M1) was significantly higher than that in M0 (P < 0.001). In addition, the levels of urinary angiostatin/Cr in patients with tubular atrophy/interstitial fibrosis score 1(T1) and T2 were significantly higher than those in T0 (P < 0.01, P < 0.001, respectively). After follow-up, renal survival was significantly worse in patients with higher levels of urinary angiostatin (P < 0.05).

Conclusions

Urinary angiostatin may be a useful novel noninvasive biomarker to evaluate disease severity and progression of IgAN.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li LS, Liu ZH. Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies. Kidney Int. 2004;66(3):920–3.CrossRef Li LS, Liu ZH. Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies. Kidney Int. 2004;66(3):920–3.CrossRef
2.
go back to reference Donadio JV, Grande JP. IgA nephropathy. N Engl J Med. 2002;347(10):738–48.CrossRef Donadio JV, Grande JP. IgA nephropathy. N Engl J Med. 2002;347(10):738–48.CrossRef
3.
go back to reference D'Amico G. Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis. 2000;36(2):227–37.CrossRef D'Amico G. Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis. 2000;36(2):227–37.CrossRef
4.
go back to reference Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45.CrossRef Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45.CrossRef
5.
go back to reference Lv J, Shi S, Xu D, Zhang H, Troyanov S, Cattran DC, Wang H. Evaluation of the Oxford classification of IgA nephropathy: a systematic review and meta-analysis. Am J Kidney Dis. 2013;62(5):891–9.CrossRef Lv J, Shi S, Xu D, Zhang H, Troyanov S, Cattran DC, Wang H. Evaluation of the Oxford classification of IgA nephropathy: a systematic review and meta-analysis. Am J Kidney Dis. 2013;62(5):891–9.CrossRef
6.
go back to reference Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, Gharavi AG, Novak J, Zhang H. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82(7):790–6.CrossRef Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, Gharavi AG, Novak J, Zhang H. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82(7):790–6.CrossRef
7.
go back to reference Rocchetti MT, Papale M, d'Apollo AM, Suriano IV, Di Palma AM, Vocino G, Montemurno E, Varraso L, Grandaliano G, Di Paolo S, et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol. 2013;8(7):1115–25.CrossRef Rocchetti MT, Papale M, d'Apollo AM, Suriano IV, Di Palma AM, Vocino G, Montemurno E, Varraso L, Grandaliano G, Di Paolo S, et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol. 2013;8(7):1115–25.CrossRef
8.
go back to reference Zhao Y, Zhu L, Zhou T, Zhang Q, Shi S, Liu L, Lv J, Zhang H. Urinary CXCL1: a novel predictor of IgA nephropathy progression. PLoS One. 2015;10(3):e0119033.CrossRef Zhao Y, Zhu L, Zhou T, Zhang Q, Shi S, Liu L, Lv J, Zhang H. Urinary CXCL1: a novel predictor of IgA nephropathy progression. PLoS One. 2015;10(3):e0119033.CrossRef
9.
go back to reference von Eggeling F, Davies H, Lomas L, Fiedler W, Junker K, Claussen U, Ernst G. Tissue-specific microdissection coupled with ProteinChip array technologies: applications in cancer research. BioTechniques. 2000;29(5):1066–70.CrossRef von Eggeling F, Davies H, Lomas L, Fiedler W, Junker K, Claussen U, Ernst G. Tissue-specific microdissection coupled with ProteinChip array technologies: applications in cancer research. BioTechniques. 2000;29(5):1066–70.CrossRef
10.
go back to reference Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis. 2012;59(6):865–73.CrossRef Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis. 2012;59(6):865–73.CrossRef
11.
go back to reference Wu T, Du Y, Han J, Singh S, Xie C, Guo Y, Zhou XJ, Ahn C, Saxena R, Mohan C. Urinary angiostatin--a novel putative marker of renal pathology chronicity in lupus nephritis. Mol Cell Proteomics. 2013;12(5):1170–9.CrossRef Wu T, Du Y, Han J, Singh S, Xie C, Guo Y, Zhou XJ, Ahn C, Saxena R, Mohan C. Urinary angiostatin--a novel putative marker of renal pathology chronicity in lupus nephritis. Mol Cell Proteomics. 2013;12(5):1170–9.CrossRef
12.
go back to reference O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315–28.CrossRef O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315–28.CrossRef
13.
go back to reference Tanaka T, Nangaku M. Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol. 2013;9(4):211–22.CrossRef Tanaka T, Nangaku M. Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol. 2013;9(4):211–22.CrossRef
14.
go back to reference Basile DP, Fredrich K, Weihrauch D, Hattan N, Chilian WM. Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. Am J Physiol Renal Physiol. 2004;286(5):F893–902.CrossRef Basile DP, Fredrich K, Weihrauch D, Hattan N, Chilian WM. Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. Am J Physiol Renal Physiol. 2004;286(5):F893–902.CrossRef
15.
go back to reference Satoh M, Kidokoro K, Ozeki M, Nagasu H, Nishi Y, Ihoriya C, Fujimoto S, Sasaki T, Kashihara N. Angiostatin production increases in response to decreased nitric oxide in aging rat kidney. Lab Invest. 2013;93(3):334–43.CrossRef Satoh M, Kidokoro K, Ozeki M, Nagasu H, Nishi Y, Ihoriya C, Fujimoto S, Sasaki T, Kashihara N. Angiostatin production increases in response to decreased nitric oxide in aging rat kidney. Lab Invest. 2013;93(3):334–43.CrossRef
16.
go back to reference Aulakh GK, Balachandran Y, Liu L, Singh B. Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res. 2014;355(2):375–96.CrossRef Aulakh GK, Balachandran Y, Liu L, Singh B. Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res. 2014;355(2):375–96.CrossRef
17.
go back to reference Zhang SX, Wang JJ, Lu K, Mott R, Longeras R, Ma JX. Therapeutic potential of angiostatin in diabetic nephropathy. J Am Soc Nephrol. 2006;17(2):475–86.CrossRef Zhang SX, Wang JJ, Lu K, Mott R, Longeras R, Ma JX. Therapeutic potential of angiostatin in diabetic nephropathy. J Am Soc Nephrol. 2006;17(2):475–86.CrossRef
18.
go back to reference Morikawa W, Yamamoto K, Ishikawa S, Takemoto S, Ono M, Fukushi J, Naito S, Nozaki C, Iwanaga S, Kuwano M. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem. 2000;275(49):38912–20.CrossRef Morikawa W, Yamamoto K, Ishikawa S, Takemoto S, Ono M, Fukushi J, Naito S, Nozaki C, Iwanaga S, Kuwano M. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem. 2000;275(49):38912–20.CrossRef
Metadata
Title
Urinary angiostatin: a novel biomarker of kidney disease associated with disease severity and progression
Authors
Yuan-Yuan Xia
Ru Bu
Guang-Yan Cai
Xue-Guang Zhang
Shu-Wei Duan
Jie Wu
Di Wu
Xiang-Mei Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1305-2

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.