Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Effect of tolvaptan on renal handling of water and sodium, GFR and central hemodynamics in autosomal dominant polycystic kidney disease during inhibition of the nitric oxide system: a randomized, placebo-controlled, double blind, crossover study

Authors: Safa Al Therwani, My Emma Sofie Malmberg, Jeppe Bakkestroem Rosenbaek, Jesper Noergaard Bech, Erling Bjerregaard Pedersen

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Tolvaptan slows progression of autosomal dominant polycystic kidney disease (ADPKD) by antagonizing the vasopressin-cAMP axis. Nitric oxide (NO) stimulates natriuresis and diuresis, but its role is unknown during tolvaptan treatment in ADPKD.

Methods

Eighteen patients with ADPKD received tolvaptan 60 mg or placebo in a randomized, placebo-controlled, double blind, crossover study. L-NMMA (L-NG-monomethyl-arginine) was given as a bolus followed by continuous infusion during 60 min. We measured: GFR, urine output (UO), free water clearance (CH2O), fractional excretion of sodium (FENa), urinary excretion of aquaporin-2 channels (u-AQP2) and epithelial sodium channels (u-ENaCγ), plasma concentrations of vasopressin (p-AVP), renin (PRC), angiotensinII (p-AngII), aldosterone (p-Aldo), and central blood pressure (cBP).

Results

During tolvaptan with NO-inhibition, a more pronounced decrease was measured in UO, CH2O (61% vs 43%) and FENa (46% vs 41%) after placebo than after tolvaptan; GFR and u-AQP2 decreased to the same extent; p-AVP increased three fold, whereas u-ENaCγ, PRC, p-AngII, and p-Aldo remained unchanged. After NO-inhibition, GFR increased after placebo and remained unchanged after tolvaptan (5% vs −6%). Central diastolic BP (CDBP) increased to a higher level after placebo than tolvaptan. Body weight fell during tolvaptan treatment.

Conclusions

During NO inhibition, tolvaptan antagonized both the antidiuretic and the antinatriuretic effect of L-NMMA, partly via an AVP-dependent mechanism. U-AQP2 was not changed by tolvaptan, presumeably due to a counteracting effect of elevated p-AVP. The reduced GFR during tolvaptan most likely is caused by the reduction in extracellular fluid volume and blood pressure.

Trial registration

Clinical Trial no: NCT02527863. Registered 18 February 2015.
Literature
1.
go back to reference Steinman TI. Polycystic kidney disease: a 2011 update. Curr Opin Nephrol Hypertens. 2012;21(2):189–94.PubMedCrossRef Steinman TI. Polycystic kidney disease: a 2011 update. Curr Opin Nephrol Hypertens. 2012;21(2):189–94.PubMedCrossRef
2.
go back to reference Devuyst O, Knoers NV, Remuzzi G, Schaefer F. Board of the Working Group for inherited kidney diseases of the European Renal Association and European dialysis and transplant association. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014;383(9931):1844–59.PubMedPubMedCentralCrossRef Devuyst O, Knoers NV, Remuzzi G, Schaefer F. Board of the Working Group for inherited kidney diseases of the European Renal Association and European dialysis and transplant association. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014;383(9931):1844–59.PubMedPubMedCentralCrossRef
3.
go back to reference Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.PubMedPubMedCentralCrossRef Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.PubMedPubMedCentralCrossRef
4.
go back to reference Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19(1):102–8.PubMedPubMedCentralCrossRef Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19(1):102–8.PubMedPubMedCentralCrossRef
5.
go back to reference Gattone VH 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9(10):1323–6.PubMedCrossRef Gattone VH 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9(10):1323–6.PubMedCrossRef
6.
go back to reference Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10(4):363–4.PubMedCrossRef Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10(4):363–4.PubMedCrossRef
7.
go back to reference Wang X, Gattone V 2nd, Harris PC, Torres VE. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16(4):846–51.PubMedCrossRef Wang X, Gattone V 2nd, Harris PC, Torres VE. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16(4):846–51.PubMedCrossRef
8.
go back to reference Reif GA, Yamaguchi T, Nivens E, Fujiki H, Pinto CS, Wallace DP. Tolvaptan inhibits ERK-dependent cell proliferation, cl(−) secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Renal Physiol. 2011;301(5):F1005–13.PubMedPubMedCentralCrossRef Reif GA, Yamaguchi T, Nivens E, Fujiki H, Pinto CS, Wallace DP. Tolvaptan inhibits ERK-dependent cell proliferation, cl(−) secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Renal Physiol. 2011;301(5):F1005–13.PubMedPubMedCentralCrossRef
9.
go back to reference Klokkers J, Langehanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmuller C, Wunder F, Sindic A, Pavenstadt H, Schlatter E, Edemir B. Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. Am J Physiol Renal Physiol. 2009;297:F693–703.PubMedCrossRef Klokkers J, Langehanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmuller C, Wunder F, Sindic A, Pavenstadt H, Schlatter E, Edemir B. Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. Am J Physiol Renal Physiol. 2009;297:F693–703.PubMedCrossRef
10.
go back to reference Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest. 2000;106:1115–26.PubMedPubMedCentralCrossRef Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest. 2000;106:1115–26.PubMedPubMedCentralCrossRef
11.
go back to reference Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. AmJ Physiol. 1998;275:F849–62. Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. AmJ Physiol. 1998;275:F849–62.
12.
go back to reference Ortiz PA, Garvin JL. Role of nitric oxide in the regulation of nephron transport. Am.J. Physiol Renal Physiol. 2002;282:F777–84.PubMedCrossRef Ortiz PA, Garvin JL. Role of nitric oxide in the regulation of nephron transport. Am.J. Physiol Renal Physiol. 2002;282:F777–84.PubMedCrossRef
13.
go back to reference Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. European heart journal. 2012;33(7):829–837, 837a–837d. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. European heart journal. 2012;33(7):829–837, 837a–837d.
14.
go back to reference Baylis C. Nitric oxide deficiency in chronic kidney disease. Am.J. Physiol Renal Physiol. 2008;294:F1–9.PubMedCrossRef Baylis C. Nitric oxide deficiency in chronic kidney disease. Am.J. Physiol Renal Physiol. 2008;294:F1–9.PubMedCrossRef
15.
go back to reference Al Therwani S, Mose FH, Jensen JM, Bech JN, Pedersen EB. Effect of vasopressin antagonism on renal handling of sodium and water and central and brachial blood pressure during inhibition of the nitric oxide system in healthy subjects. BMC Nephrol. 2014;15:100. doi:10.1186/1471-2369-15-100.PubMedPubMedCentralCrossRef Al Therwani S, Mose FH, Jensen JM, Bech JN, Pedersen EB. Effect of vasopressin antagonism on renal handling of sodium and water and central and brachial blood pressure during inhibition of the nitric oxide system in healthy subjects. BMC Nephrol. 2014;15:100. doi:10.​1186/​1471-2369-15-100.PubMedPubMedCentralCrossRef
17.
go back to reference Schafer JA. Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol Renal Physiol. 2002;283(2):F221–35.PubMedCrossRef Schafer JA. Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol Renal Physiol. 2002;283(2):F221–35.PubMedCrossRef
18.
go back to reference Schafer JA, Hawk CT. Regulation of na+ channels in the cortical collecting duct by AVP and mineralocorticoids. Kidney Int. 1992;41(2):255–68.PubMedCrossRef Schafer JA, Hawk CT. Regulation of na+ channels in the cortical collecting duct by AVP and mineralocorticoids. Kidney Int. 1992;41(2):255–68.PubMedCrossRef
19.
go back to reference Butterworth MB, Edinger RS, Johnson JP, Frizzell RA. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol. 2005;125(1):81–101.PubMedPubMedCentralCrossRef Butterworth MB, Edinger RS, Johnson JP, Frizzell RA. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol. 2005;125(1):81–101.PubMedPubMedCentralCrossRef
20.
go back to reference Graffe CC, Bech JN, Lauridsen TG, Pedersen EB. Urinary excretion of AQP2 and ENaC in autosomal dominant polycystic kidney disease during basal conditions and after a hypertonic saline infusion. AmJ Physiol Renal Physiol. 2012;302:F917–27.CrossRef Graffe CC, Bech JN, Lauridsen TG, Pedersen EB. Urinary excretion of AQP2 and ENaC in autosomal dominant polycystic kidney disease during basal conditions and after a hypertonic saline infusion. AmJ Physiol Renal Physiol. 2012;302:F917–27.CrossRef
21.
go back to reference Gansevoort RT, Arici M, Benzing T, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and european renal best practice. Nephrol Dial Transplant. 2016;31(3):337–48.PubMedPubMedCentralCrossRef Gansevoort RT, Arici M, Benzing T, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and european renal best practice. Nephrol Dial Transplant. 2016;31(3):337–48.PubMedPubMedCentralCrossRef
22.
go back to reference Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet. 1994;343(8901):824–7.PubMedCrossRef Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet. 1994;343(8901):824–7.PubMedCrossRef
23.
go back to reference Larsen T, Mose FH, Bech JN, Pedersen EB. Effect of nitric oxide inhibition on blood pressure and renal sodium handling: a dose-response study in healthy man. Clin Exp Hypertens. 2012;34(8):567–74.PubMedCrossRef Larsen T, Mose FH, Bech JN, Pedersen EB. Effect of nitric oxide inhibition on blood pressure and renal sodium handling: a dose-response study in healthy man. Clin Exp Hypertens. 2012;34(8):567–74.PubMedCrossRef
24.
go back to reference Graffe CC, Bech JN, Pedersen EB. Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. AM J Physiol Renal Physiol. 2012;302(2):F264–75.PubMedCrossRef Graffe CC, Bech JN, Pedersen EB. Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. AM J Physiol Renal Physiol. 2012;302(2):F264–75.PubMedCrossRef
25.
go back to reference Pedersen RS, Bentzen H, Bech JN, Pedersen EB. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am J Physiol Renal Physiol. 2001;280(5):F860–7.PubMed Pedersen RS, Bentzen H, Bech JN, Pedersen EB. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am J Physiol Renal Physiol. 2001;280(5):F860–7.PubMed
26.
go back to reference Matthesen SK, Larsen T, Lauridsen TG, Vase H, Gjorup PH, Nykjaer KM, Nielsen S, Pedersen EB. Effect of amiloride and spironolactone on renal tubular function, ambulatory blood pressure, and pulse wave velocity in healthy participants in a double-blinded, randomized, placebo-controlled, crossover trial. Clin Exp Hypertens. 2012;34(8):588–600.PubMedCrossRef Matthesen SK, Larsen T, Lauridsen TG, Vase H, Gjorup PH, Nykjaer KM, Nielsen S, Pedersen EB. Effect of amiloride and spironolactone on renal tubular function, ambulatory blood pressure, and pulse wave velocity in healthy participants in a double-blinded, randomized, placebo-controlled, crossover trial. Clin Exp Hypertens. 2012;34(8):588–600.PubMedCrossRef
27.
go back to reference Lauridsen TG, Vase H, Bech JN, Nielsen S, Pedersen EB. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney. Eur J Endocrinol. 2010;162:961–9.PubMedCrossRef Lauridsen TG, Vase H, Bech JN, Nielsen S, Pedersen EB. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney. Eur J Endocrinol. 2010;162:961–9.PubMedCrossRef
28.
go back to reference Hager H, Kwon TH, Vinnikova AK, et al. Immunocytochemical andimmunoelectron microscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney. Am J Physiol Renal Physiol. 2001;280:F1093–106.PubMed Hager H, Kwon TH, Vinnikova AK, et al. Immunocytochemical andimmunoelectron microscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney. Am J Physiol Renal Physiol. 2001;280:F1093–106.PubMed
29.
go back to reference Pedersen EB, Danielsen H, Spencer ES. Effect of indapamide on renal plasma flow, glomerular filtration rate and arginine vasopressin in plasma in essential hypertension. Eur J Clin Pharmacol. 1984;26(5):543–7.PubMedCrossRef Pedersen EB, Danielsen H, Spencer ES. Effect of indapamide on renal plasma flow, glomerular filtration rate and arginine vasopressin in plasma in essential hypertension. Eur J Clin Pharmacol. 1984;26(5):543–7.PubMedCrossRef
30.
go back to reference Pedersen EB, Eiskjaer H, Madsen B, Danielsen H, Egeblad M, Nielsen CB. Effect of captopril on renal extraction of renin, angiotensin II, atrial natriuretic peptide and vasopressin, and renal vein renin ratio in patients with arterial hypertension and unilateral renal artery disease. Nephrol Dial Transplant. 1993;8(10):1064–70.PubMed Pedersen EB, Eiskjaer H, Madsen B, Danielsen H, Egeblad M, Nielsen CB. Effect of captopril on renal extraction of renin, angiotensin II, atrial natriuretic peptide and vasopressin, and renal vein renin ratio in patients with arterial hypertension and unilateral renal artery disease. Nephrol Dial Transplant. 1993;8(10):1064–70.PubMed
31.
go back to reference Mose FH, Jensen JM, Therwani S, et al. Effect of nebivolol on renal nitric oxide availability and tubular function in patients with essential hypertension. Br J Clin Pharmacol. 2015;80(3):425–35.PubMedPubMedCentralCrossRef Mose FH, Jensen JM, Therwani S, et al. Effect of nebivolol on renal nitric oxide availability and tubular function in patients with essential hypertension. Br J Clin Pharmacol. 2015;80(3):425–35.PubMedPubMedCentralCrossRef
32.
go back to reference Boberg U, Persson AE. Tubuloglomerular feedback during elevated renal venous pressure. Am J Phys. 1985;249(4 Pt 2):F524–31. Boberg U, Persson AE. Tubuloglomerular feedback during elevated renal venous pressure. Am J Phys. 1985;249(4 Pt 2):F524–31.
33.
go back to reference Bichet DG, Razi M, Arthus MF, et al. Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus. Evidence for a pre-cyclic AMP V2 receptor defective mechanism. Kidney Int. 1989;36(5):859–66.PubMedCrossRef Bichet DG, Razi M, Arthus MF, et al. Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus. Evidence for a pre-cyclic AMP V2 receptor defective mechanism. Kidney Int. 1989;36(5):859–66.PubMedCrossRef
34.
go back to reference Irazabal MV, Torres VE, Hogan MC, et al. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int. 2011;80(3):295–301.PubMedCrossRef Irazabal MV, Torres VE, Hogan MC, et al. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int. 2011;80(3):295–301.PubMedCrossRef
35.
go back to reference Boertien WE, Meijer E, de Jong PE, et al. Short-term renal hemodynamic effects of tolvaptan in subjects with autosomal dominant polycystic kidney disease at various stages of chronic kidney disease. Kidney Int. 2013;84(6):1278–86.PubMedCrossRef Boertien WE, Meijer E, de Jong PE, et al. Short-term renal hemodynamic effects of tolvaptan in subjects with autosomal dominant polycystic kidney disease at various stages of chronic kidney disease. Kidney Int. 2013;84(6):1278–86.PubMedCrossRef
37.
38.
go back to reference Bachinsky DR, Sabolic I, Emmanouel DS, et al. Water channel expression in human ADPKD kidneys. Am J Phys. 1995;268(3 Pt 2):F398. Bachinsky DR, Sabolic I, Emmanouel DS, et al. Water channel expression in human ADPKD kidneys. Am J Phys. 1995;268(3 Pt 2):F398.
39.
go back to reference Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995;92(4):1013–7.PubMedPubMedCentralCrossRef Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995;92(4):1013–7.PubMedPubMedCentralCrossRef
40.
go back to reference Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D. Physiology and pathophysiology of renal aquaporins. JAm Soc Nephrol. 1999;10:647–63. Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D. Physiology and pathophysiology of renal aquaporins. JAm Soc Nephrol. 1999;10:647–63.
41.
go back to reference Nielsen S, Knepper MA. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Phys. 1993;265(2 Pt 2):F204–13. Nielsen S, Knepper MA. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Phys. 1993;265(2 Pt 2):F204–13.
42.
go back to reference Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res. 2001;51(3):372–90.PubMedCrossRef Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res. 2001;51(3):372–90.PubMedCrossRef
43.
go back to reference Flamion B, Spring KR. Water permeability of apical and basolateral cell membranes of rat inner medullary collecting duct. Am J Phys. 1990;259(6 Pt 2):F986–99. Flamion B, Spring KR. Water permeability of apical and basolateral cell membranes of rat inner medullary collecting duct. Am J Phys. 1990;259(6 Pt 2):F986–99.
44.
go back to reference Djelidi S, Fay M, Cluzeaud F, et al. Transcriptional regulation of sodium transport by vasopressin in renal cells. J Biol Chem. 1997;272(52):32919–24.PubMedCrossRef Djelidi S, Fay M, Cluzeaud F, et al. Transcriptional regulation of sodium transport by vasopressin in renal cells. J Biol Chem. 1997;272(52):32919–24.PubMedCrossRef
45.
go back to reference Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch. 2009;458(1):111–35.PubMedCrossRef Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch. 2009;458(1):111–35.PubMedCrossRef
46.
go back to reference Ahn KY, Mohaupt MG, Madsen KM, Kone BC. In situ hybridization localization of mRNA encoding inducible nitric oxide synthase in rat kidney. Am J Physiol Renal Fluid Electrolyte Physiol. 1994;267:F748–57. Ahn KY, Mohaupt MG, Madsen KM, Kone BC. In situ hybridization localization of mRNA encoding inducible nitric oxide synthase in rat kidney. Am J Physiol Renal Fluid Electrolyte Physiol. 1994;267:F748–57.
47.
go back to reference Stoos BA, Garcia NH, Garvin JL. Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J Am Soc Nephrol. 1995;6(1):89–94.PubMed Stoos BA, Garcia NH, Garvin JL. Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J Am Soc Nephrol. 1995;6(1):89–94.PubMed
48.
go back to reference Koshimizu TA, Nasa Y, Tanoue A, et al. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci U S A. 2006;103(20):7807–12.PubMedPubMedCentralCrossRef Koshimizu TA, Nasa Y, Tanoue A, et al. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci U S A. 2006;103(20):7807–12.PubMedPubMedCentralCrossRef
Metadata
Title
Effect of tolvaptan on renal handling of water and sodium, GFR and central hemodynamics in autosomal dominant polycystic kidney disease during inhibition of the nitric oxide system: a randomized, placebo-controlled, double blind, crossover study
Authors
Safa Al Therwani
My Emma Sofie Malmberg
Jeppe Bakkestroem Rosenbaek
Jesper Noergaard Bech
Erling Bjerregaard Pedersen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0686-3

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue