Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Endothelial Colony Forming Cells (ECFCs) in murine AKI – implications for future cell-based therapies

Authors: D. Patschan, K. Schwarze, B. Tampe, M. Zeisberg, S. Patschan, G. A. Müller

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

In recent years, early Endothelial Progenitor Cells (eEPCs) have been proven as effective tool in murine ischemic AKI and in diabetic nephropathy. The mechanisms of eEPC-mediated vasoprotection have been elucidated in detail. Besides producing a diverse range of humoral factors, the cells also act by secreting vasomodulatory microvesicles. Only few data in contrast have been published about the role of so-called Endothelial Colony Forming Cells (ECFCs - late EPCs) in ischemic AKI. We thus aimed to investigate ECFC effects on postischemic kidney function over several weeks. Our special interest focused on endothelial-to-mesenchymal transition (EndoMT), peritubular capillary density (PTCD), endothelial alpha-Tubulin (aT - cytoskeletal integrity), and endothelial p62 (marker of autophagocytic flux).

Methods

Eight to twelve weeks old male C57Bl/6 N mice were subjected to bilateral renal pedicle clamping for 35 or 45 min, respectively. Donor-derived syngeneic ECFCs (0.5 × 106) were i.v. injected at the end of ischemia. Animals were analyzed 1, 4 and 6 weeks later.

Results

Cell therapy improved kidney function exclusively at week 1 (35 and 45 min). Ischemia-induced fibrosis was diminished in all experimental groups by ECFCs, while PTCD loss remained unaffected. Significant EndoMT was detected in only two of 6 groups (35 min, week 4 and 45 min, week 6), ECFCs reduced EndoMT only in the latter. Endothelial aT declined under almost all experimental conditions and these effects were further aggravated by ECFCs. p62 was elevated in endothelial cells, more so after 45 than after 35 min of ischemia. Cell therapy did not modulate p62 abundances at any time point.

Conclusion

A single dose of ECFCs administered shortly post-ischemia is capable to reduce interstitial fibrosis in the mid- to long-term whereas excretory dysfunction is improved only in a transient manner. There are certain differences in renal outcome parameters between eEPCs and ECFC. The latter do not prevent animals from peritubular capillary loss and they also do not further elevate endothelial p62. We conclude that differences between eEPCs and ECFCs result from certain mechanisms by which the cells act around and within vessels. Overall, ECFC treatment was not as efficient as eEPC therapy in preventing mice from ischemia-induced mid- to long-term damage.
Literature
1.
go back to reference Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.CrossRefPubMed Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.CrossRefPubMed
2.
go back to reference Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells Dayt Ohio. 2011;29:1650–5.CrossRef Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells Dayt Ohio. 2011;29:1650–5.CrossRef
3.
go back to reference Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–8.CrossRefPubMed Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–8.CrossRefPubMed
4.
go back to reference Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110:624–37.CrossRefPubMedPubMedCentral Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110:624–37.CrossRefPubMedPubMedCentral
5.
go back to reference Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109:1801–9.CrossRefPubMedPubMedCentral Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109:1801–9.CrossRefPubMedPubMedCentral
6.
go back to reference Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol. 2011;50:266–72.CrossRefPubMed Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol. 2011;50:266–72.CrossRefPubMed
7.
go back to reference Burger D, Viñas JL, Akbari S, Dehak H, Knoll W, Gutsol A, et al. Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. Am J Pathol. 2015;185:2309–23.CrossRefPubMed Burger D, Viñas JL, Akbari S, Dehak H, Knoll W, Gutsol A, et al. Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. Am J Pathol. 2015;185:2309–23.CrossRefPubMed
9.
go back to reference Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.CrossRefPubMedPubMedCentral Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.CrossRefPubMedPubMedCentral
10.
go back to reference Moubarik C, Guillet B, Youssef B, Codaccioni J-L, Piercecchi M-D, Sabatier F, et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev. 2011;7:208–20.CrossRefPubMed Moubarik C, Guillet B, Youssef B, Codaccioni J-L, Piercecchi M-D, Sabatier F, et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev. 2011;7:208–20.CrossRefPubMed
11.
12.
go back to reference Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009;13:87–102.CrossRefPubMed Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009;13:87–102.CrossRefPubMed
13.
go back to reference Hoste EAJ, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med. 2008;36:S146–51.CrossRefPubMed Hoste EAJ, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med. 2008;36:S146–51.CrossRefPubMed
14.
go back to reference Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol CJASN. 2014;9:12–20.CrossRefPubMed Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol CJASN. 2014;9:12–20.CrossRefPubMed
15.
go back to reference Basile C. The long-term prognosis of acute kidney injury: acute renal failure as a cause of chronic kidney disease. J Nephrol. 2008;21:657–62.PubMed Basile C. The long-term prognosis of acute kidney injury: acute renal failure as a cause of chronic kidney disease. J Nephrol. 2008;21:657–62.PubMed
16.
go back to reference Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72:151–6.CrossRefPubMed Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72:151–6.CrossRefPubMed
17.
go back to reference Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Ren Physiol. 2001;281:F887–899.CrossRef Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Ren Physiol. 2001;281:F887–899.CrossRef
18.
go back to reference Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, et al. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Ren Physiol. 2011;300:F721–33.CrossRef Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, et al. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Ren Physiol. 2011;300:F721–33.CrossRef
19.
go back to reference Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets. 2014;14:3–14.CrossRefPubMedPubMedCentral Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets. 2014;14:3–14.CrossRefPubMedPubMedCentral
20.
go back to reference Strutz F, Müller GA. Renal fibrosis and the origin of the renal fibroblast. Nephrol Dial Transpl. 2006;21:3368–70.CrossRef Strutz F, Müller GA. Renal fibrosis and the origin of the renal fibroblast. Nephrol Dial Transpl. 2006;21:3368–70.CrossRef
21.
go back to reference O’Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, et al. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol. 2007;292:H285–294.CrossRefPubMed O’Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, et al. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol. 2007;292:H285–294.CrossRefPubMed
22.
go back to reference Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol JASN. 2008;19:2282–7.CrossRefPubMed Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol JASN. 2008;19:2282–7.CrossRefPubMed
23.
go back to reference Patschan D, Schwarze K, Lange A, Meise N, Henze E, Becker JU, et al. Bone Morphogenetic Protein-5 and early Endothelial Outgrowth Cells (eEOCs) in acute ischemic kidney injury (AKI) and 5/6-chronic kidney disease. Am J Physiol Renal Physiol. 2013;305(3):F314–22.CrossRefPubMed Patschan D, Schwarze K, Lange A, Meise N, Henze E, Becker JU, et al. Bone Morphogenetic Protein-5 and early Endothelial Outgrowth Cells (eEOCs) in acute ischemic kidney injury (AKI) and 5/6-chronic kidney disease. Am J Physiol Renal Physiol. 2013;305(3):F314–22.CrossRefPubMed
24.
go back to reference Patschan D, Schwarze K, Henze E, Becker JU, Patschan S, Muller GA. eEOC-mediated modulation of endothelial autophagy, senescence, and EnMT in murine diabetic nephropathy. Am J Physiol Renal Physiol. 2014;307(6):F686-94. Patschan D, Schwarze K, Henze E, Becker JU, Patschan S, Muller GA. eEOC-mediated modulation of endothelial autophagy, senescence, and EnMT in murine diabetic nephropathy. Am J Physiol Renal Physiol. 2014;307(6):F686-94.
25.
go back to reference Tögel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis Off J Natl Kidney Found. 2012;60:1012–22.CrossRef Tögel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis Off J Natl Kidney Found. 2012;60:1012–22.CrossRef
26.
go back to reference Westenfelder C, Togel FE. Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney Int Suppl. 2011;1:103–6.CrossRef Westenfelder C, Togel FE. Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney Int Suppl. 2011;1:103–6.CrossRef
27.
go back to reference Li Q, Tian S-F, Guo Y, Niu X, Hu B, Guo S-C, et al. Transplantation of induced pluripotent stem cell-derived renal stem cells improved acute kidney injury. Cell Amp Biosci. 2015;5:45.CrossRef Li Q, Tian S-F, Guo Y, Niu X, Hu B, Guo S-C, et al. Transplantation of induced pluripotent stem cell-derived renal stem cells improved acute kidney injury. Cell Amp Biosci. 2015;5:45.CrossRef
28.
go back to reference Tarng D-C, Tseng W-C, Lee P-Y, Chiou S-H, Hsieh S-L. Induced pluripotent stem cell-derived conditioned medium attenuates acute kidney injury by downregulating the oxidative stress-related pathway in ischemia-reperfusion rats. Cell Transplant. 2015; Tarng D-C, Tseng W-C, Lee P-Y, Chiou S-H, Hsieh S-L. Induced pluripotent stem cell-derived conditioned medium attenuates acute kidney injury by downregulating the oxidative stress-related pathway in ischemia-reperfusion rats. Cell Transplant. 2015;
29.
go back to reference Toyohara T, Mae S-I, Sueta S-I, Inoue T, Yamagishi Y, Kawamoto T, et al. Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med. 2015;4:980–92.CrossRefPubMedPubMedCentral Toyohara T, Mae S-I, Sueta S-I, Inoue T, Yamagishi Y, Kawamoto T, et al. Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med. 2015;4:980–92.CrossRefPubMedPubMedCentral
30.
go back to reference Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67:488–97.CrossRefPubMedPubMedCentral Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67:488–97.CrossRefPubMedPubMedCentral
31.
go back to reference Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18:3731–4.CrossRefPubMedPubMedCentral Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18:3731–4.CrossRefPubMedPubMedCentral
32.
go back to reference Schuster MD, Kocher AA, Seki T, Martens TP, Xiang G, Homma S, et al. Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol. 2004;287:H525–532.CrossRefPubMed Schuster MD, Kocher AA, Seki T, Martens TP, Xiang G, Homma S, et al. Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol. 2004;287:H525–532.CrossRefPubMed
33.
go back to reference Kawamoto A, Asahara T. Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc Interv Off J Soc Card Angiogr Amp Interv. 2007;70:477–84.CrossRef Kawamoto A, Asahara T. Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc Interv Off J Soc Card Angiogr Amp Interv. 2007;70:477–84.CrossRef
34.
go back to reference Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc Radiat Med. 2002;3:221–5.CrossRefPubMed Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc Radiat Med. 2002;3:221–5.CrossRefPubMed
35.
go back to reference Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634–7.CrossRefPubMed Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634–7.CrossRefPubMed
36.
go back to reference Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012;82:412–27.CrossRefPubMed Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012;82:412–27.CrossRefPubMed
37.
go back to reference Becherucci F, Mazzinghi B, Ronconi E, Peired A, Lazzeri E, Sagrinati C, et al. The role of endothelial progenitor cells in acute kidney injury. Blood Purif. 2009;27:261–70.CrossRefPubMed Becherucci F, Mazzinghi B, Ronconi E, Peired A, Lazzeri E, Sagrinati C, et al. The role of endothelial progenitor cells in acute kidney injury. Blood Purif. 2009;27:261–70.CrossRefPubMed
38.
go back to reference Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Ren Physiol. 2006;291:F176–185.CrossRef Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Ren Physiol. 2006;291:F176–185.CrossRef
39.
go back to reference Patschan D, Hildebrandt A, Rinneburger J, Wessels JT, Patschan SA, Becker JU, et al. The hormone Melatonin stimulates renoprotective effects of early outgrowth endothelial progenitor cells in acute ischemic kidney injury. Am J Physiol Ren Physiol. 2012;302:F1305–12.CrossRef Patschan D, Hildebrandt A, Rinneburger J, Wessels JT, Patschan SA, Becker JU, et al. The hormone Melatonin stimulates renoprotective effects of early outgrowth endothelial progenitor cells in acute ischemic kidney injury. Am J Physiol Ren Physiol. 2012;302:F1305–12.CrossRef
40.
go back to reference Patschan D, Rinneburger J, Idrizi N, Backhaus R, Schwarze K, Henze E, et al. Angiopoietin-1 treated early endothelial outgrowth cells (eEOCs) are activated in vitro and reduce renal damage in murine acute ischemic kidney injury (iAKI). BMC Nephrol. 2013;14:227.CrossRefPubMedPubMedCentral Patschan D, Rinneburger J, Idrizi N, Backhaus R, Schwarze K, Henze E, et al. Angiopoietin-1 treated early endothelial outgrowth cells (eEOCs) are activated in vitro and reduce renal damage in murine acute ischemic kidney injury (iAKI). BMC Nephrol. 2013;14:227.CrossRefPubMedPubMedCentral
41.
go back to reference Patschan D, Backhaus R, Elle HJ, Schwarze K, Henze E, Becker JU, et al. Angiopoietin-2 modulates eEOC-mediated renoprotection in AKI in a dose-dependent manner. J Nephrol. 2013;26(4):667–74 Patschan D, Backhaus R, Elle HJ, Schwarze K, Henze E, Becker JU, et al. Angiopoietin-2 modulates eEOC-mediated renoprotection in AKI in a dose-dependent manner. J Nephrol. 2013;26(4):667–74
42.
go back to reference Patschan D, Patschan S, Wessels JT, Becker JU, David S, Henze E, et al. Epac-1 activator 8-O-cAMP augments renoprotective effects of syngeneic [corrected] murine EPCs in acute ischemic kidney injury. Am J Physiol Ren Physiol. 2010;298:F78–85.CrossRef Patschan D, Patschan S, Wessels JT, Becker JU, David S, Henze E, et al. Epac-1 activator 8-O-cAMP augments renoprotective effects of syngeneic [corrected] murine EPCs in acute ischemic kidney injury. Am J Physiol Ren Physiol. 2010;298:F78–85.CrossRef
43.
go back to reference Patschan D, Schwarze K, Henze E, Patschan S, Müller GA. Endothelial-to-Mesenchymal Transition and endothelial cilia in EPC-mediated postischemic kidney protection. Am J Physiol Renal Physiol. 2016; doi:10.1152/ajprenal.00306.2015. Patschan D, Schwarze K, Henze E, Patschan S, Müller GA. Endothelial-to-Mesenchymal Transition and endothelial cilia in EPC-mediated postischemic kidney protection. Am J Physiol Renal Physiol. 2016; doi:10.​1152/​ajprenal.​00306.​2015.
44.
go back to reference Sradnick J, Rong S, Luedemann A, Parmentier SP, Bartaun C, Todorov VT, et al. Extrarenal progenitor cells Do Not contribute to renal endothelial repair. J Am Soc Nephrol JASN. 2016;27:1714–26.CrossRefPubMed Sradnick J, Rong S, Luedemann A, Parmentier SP, Bartaun C, Todorov VT, et al. Extrarenal progenitor cells Do Not contribute to renal endothelial repair. J Am Soc Nephrol JASN. 2016;27:1714–26.CrossRefPubMed
45.
go back to reference Patschan D, Schwarze K, Henze E, Patschan S, Müller GA. Endothelial autophagy and Endothelial-to-Mesenchymal Transition (EndoMT) in eEPC treatment of ischemic AKI. J. Nephrol. 2015;29(5):637–44 Patschan D, Schwarze K, Henze E, Patschan S, Müller GA. Endothelial autophagy and Endothelial-to-Mesenchymal Transition (EndoMT) in eEPC treatment of ischemic AKI. J. Nephrol. 2015;29(5):637–44
47.
go back to reference Singh KK, Lovren F, Pan Y, Quan A, Ramadan A, Matkar PN, et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem. 2015;290:2547–59.CrossRefPubMed Singh KK, Lovren F, Pan Y, Quan A, Ramadan A, Matkar PN, et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem. 2015;290:2547–59.CrossRefPubMed
48.
go back to reference Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.CrossRefPubMedPubMedCentral Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.CrossRefPubMedPubMedCentral
49.
go back to reference Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.CrossRefPubMedPubMedCentral Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.CrossRefPubMedPubMedCentral
51.
go back to reference Goligorsky MS, Yasuda K, Ratliff B. Dysfunctional endothelial progenitor cells in chronic kidney disease. J Am Soc Nephrol JASN. 2010;21:911–9.CrossRefPubMed Goligorsky MS, Yasuda K, Ratliff B. Dysfunctional endothelial progenitor cells in chronic kidney disease. J Am Soc Nephrol JASN. 2010;21:911–9.CrossRefPubMed
52.
go back to reference Reinisch A, Hofmann NA, Obenauf AC, Kashofer K, Rohde E, Schallmoser K, et al. Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood. 2009;113:6716–25.CrossRefPubMedPubMedCentral Reinisch A, Hofmann NA, Obenauf AC, Kashofer K, Rohde E, Schallmoser K, et al. Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood. 2009;113:6716–25.CrossRefPubMedPubMedCentral
Metadata
Title
Endothelial Colony Forming Cells (ECFCs) in murine AKI – implications for future cell-based therapies
Authors
D. Patschan
K. Schwarze
B. Tampe
M. Zeisberg
S. Patschan
G. A. Müller
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0471-3

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue