Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Acute kidney injury as an independent risk factor for unplanned 90-day hospital readmissions

Authors: Simon Sawhney, Angharad Marks, Nick Fluck, David J. McLernon, Gordon J. Prescott, Corri Black

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Reducing readmissions is an international priority in healthcare. Acute kidney injury (AKI) is common, serious and also a global concern. This analysis evaluates AKI as a candidate risk factor for unplanned readmissions and determines the reasons for readmissions.

Methods

GLOMMS-II is a large population cohort from one health authority in Scotland, combining hospital episode data and complete serial biochemistry results through data-linkage. 16453 people (2623 with AKI and 13830 without AKI) from GLOMMS-II who survived an index hospital admission in 2003 were used to identify the causes of and predict readmissions. The main outcome was “unplanned readmission or death” within 90 days of discharge. In a secondary analysis, the outcome was limited to readmissions with acute pulmonary oedema. 26 candidate predictors during the index admission included AKI (defined and staged 1–3 using an automated e-alert algorithm), prior AKI episodes, baseline kidney function, index admission circumstances and comorbidities. Prediction models were developed and assessed using multivariable logistic regression (stepwise variable selection), C statistics, bootstrap validation and decision curve analysis.

Results

Three thousand sixty-five (18.6%) patients had the main outcome (2702 readmitted, 363 died without readmission). The outcome was strongly predicted by AKI. Multivariable odds ratios for AKI stage 3; 2 and 1 (vs no AKI) were 2.80 (2.22–3.53); 2.23 (1.85–2.68) and 1.50 (1.33–1.70). Acute pulmonary oedema was the reason for readmission in 26.6% with AKI and eGFR < 60; and 4.0% with no AKI and eGFR ≥ 60. The best stepwise model from all candidate predictors had a C statistic of 0.698 for the main outcome. In a secondary analysis, a model for readmission with acute pulmonary oedema had a C statistic of 0.853. In decision curve analysis, AKI improved clinical utility when added to any model, although the incremental benefit was small when predicting the main outcome.

Conclusions

AKI is a strong, consistent and independent risk factor for unplanned readmissions – particularly readmissions with acute pulmonary oedema. Pre-emptive planning at discharge should be considered to minimise avoidable readmissions in this high risk group.
Appendix
Available only for authorised users
Literature
2.
5.
go back to reference Wiebe N, Klarenbach SW, Allan GM, Manns BJ, Pelletier R, James MT, Bello A, Hemmelgarn BR, Tonelli M. Potentially preventable hospitalization as a complication of CKD: a cohort study. Am J Kidney Dis. 2014;64(2):230–8.CrossRefPubMed Wiebe N, Klarenbach SW, Allan GM, Manns BJ, Pelletier R, James MT, Bello A, Hemmelgarn BR, Tonelli M. Potentially preventable hospitalization as a complication of CKD: a cohort study. Am J Kidney Dis. 2014;64(2):230–8.CrossRefPubMed
6.
go back to reference Steyerberg EW. Clinical prediction models. 1st ed. New York: Springer; 2009.CrossRef Steyerberg EW. Clinical prediction models. 1st ed. New York: Springer; 2009.CrossRef
7.
8.
go back to reference Billings J, Dixon J, Mijanovich T, Wennberg D. Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. Br Med J. 2006;333(7563):327.CrossRef Billings J, Dixon J, Mijanovich T, Wennberg D. Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. Br Med J. 2006;333(7563):327.CrossRef
9.
go back to reference Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ Open. 2012;2(4):e001667. doi:10.1136/bmjopen-2012-001667. Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ Open. 2012;2(4):e001667. doi:10.​1136/​bmjopen-2012-001667.
10.
go back to reference Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.CrossRefPubMed Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.CrossRefPubMed
12.
go back to reference National Institute for Health and Care Excellence: Prevention, detection and management of acute kidney injury up to the point of renal replacement therapy. NICE 2013, Guideline 169: London, UK. National Institute for Health and Care Excellence: Prevention, detection and management of acute kidney injury up to the point of renal replacement therapy. NICE 2013, Guideline 169: London, UK.
14.
go back to reference Koulouridis I, Price LL, Madias NE, Jaber BL. Hospital-acquired acute kidney injury and hospital readmission: a cohort study. Am J Kidney Dis. 2015;65(2):275–82.CrossRefPubMed Koulouridis I, Price LL, Madias NE, Jaber BL. Hospital-acquired acute kidney injury and hospital readmission: a cohort study. Am J Kidney Dis. 2015;65(2):275–82.CrossRefPubMed
15.
go back to reference Horkan CM, Purtle SW, Mendu ML, Moromizato T, Gibbons FK, Christopher KB. The association of acute kidney injury in the critically ill and postdischarge outcomes: a cohort study. Crit Care Med. 2015;43(2):354–64.CrossRefPubMed Horkan CM, Purtle SW, Mendu ML, Moromizato T, Gibbons FK, Christopher KB. The association of acute kidney injury in the critically ill and postdischarge outcomes: a cohort study. Crit Care Med. 2015;43(2):354–64.CrossRefPubMed
17.
go back to reference Marks A, Fluck N, Prescott GJ, Robertson L, Simpson WG, Cairns Smith W, Black C. Looking to the future: predicting renal replacement outcomes in a large community cohort with chronic kidney disease. Nephrol Dial Transplant. 2015;30(9):1507–17.CrossRefPubMed Marks A, Fluck N, Prescott GJ, Robertson L, Simpson WG, Cairns Smith W, Black C. Looking to the future: predicting renal replacement outcomes in a large community cohort with chronic kidney disease. Nephrol Dial Transplant. 2015;30(9):1507–17.CrossRefPubMed
18.
go back to reference Sawhney S, Fluck N, Fraser SD, Marks A, Prescott GJ, Roderick PJ, Black C. KDIGO-based acute kidney injury criteria operate differently in hospitals and the community—findings from a large population cohort. Nephrol Dial Transplant. 2016;31(6):922–9.CrossRefPubMedPubMedCentral Sawhney S, Fluck N, Fraser SD, Marks A, Prescott GJ, Roderick PJ, Black C. KDIGO-based acute kidney injury criteria operate differently in hospitals and the community—findings from a large population cohort. Nephrol Dial Transplant. 2016;31(6):922–9.CrossRefPubMedPubMedCentral
19.
go back to reference Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, Arima H, Chadban SJ, Cirillo M, Djurdjev O, Green JA, Heine GH, Inker LA, Irie F, Ishani A, Ix JH, Kovesdy CP, Marks A, Ohkubo T, Shalev V, Shankar A, Wen CP, de Jong PE, Iseki K, Stengel B, Gansevoort RT, Levey AS. CKD prognosis consortium: decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014;311(24):2518–31.CrossRefPubMedPubMedCentral Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, Arima H, Chadban SJ, Cirillo M, Djurdjev O, Green JA, Heine GH, Inker LA, Irie F, Ishani A, Ix JH, Kovesdy CP, Marks A, Ohkubo T, Shalev V, Shankar A, Wen CP, de Jong PE, Iseki K, Stengel B, Gansevoort RT, Levey AS. CKD prognosis consortium: decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014;311(24):2518–31.CrossRefPubMedPubMedCentral
20.
go back to reference Sawhney S, Marks A, Fluck N, Levin A, Prescott GJ, Black C. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis. 2017;69(10):18–28. Sawhney S, Marks A, Fluck N, Levin A, Prescott GJ, Black C. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis. 2017;69(10):18–28.
23.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney inter. 2012;2(Suppl):1–138. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney inter. 2012;2(Suppl):1–138.
26.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney inter. 2013;3(Suppl):1–150. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney inter. 2013;3(Suppl):1–150.
27.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A New equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRefPubMedPubMedCentral Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A New equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRefPubMedPubMedCentral
28.
go back to reference Johnston MC, Marks A, Crilly MA, Prescott GJ, Robertson LM, Black C. Charlson index scores from administrative data and case-note review compared favourably in a renal disease cohort. Eur J Public Health. 2015;25(3):391–6.CrossRefPubMed Johnston MC, Marks A, Crilly MA, Prescott GJ, Robertson LM, Black C. Charlson index scores from administrative data and case-note review compared favourably in a renal disease cohort. Eur J Public Health. 2015;25(3):391–6.CrossRefPubMed
31.
go back to reference Metcalfe A, Neudam A, Forde S, Liu M, Drosler S, Quan H, Jetté N. Case definitions for acute myocardial infarction in administrative databases and their impact on in-hospital mortality rates. Health Serv Res. 2013;48(1):290–318.CrossRefPubMed Metcalfe A, Neudam A, Forde S, Liu M, Drosler S, Quan H, Jetté N. Case definitions for acute myocardial infarction in administrative databases and their impact on in-hospital mortality rates. Health Serv Res. 2013;48(1):290–318.CrossRefPubMed
32.
go back to reference Kokotailo RA, Hill MD. Coding of stroke and stroke risk factors using international classification of diseases, revisions 9 and 10. Stroke. 2005;36(8):1776.CrossRefPubMed Kokotailo RA, Hill MD. Coding of stroke and stroke risk factors using international classification of diseases, revisions 9 and 10. Stroke. 2005;36(8):1776.CrossRefPubMed
33.
go back to reference Ghia D, Thomas PR, Cordato DJ, Worthington JM, Cappelen-Smith C, Griffith N, Hanna I, Hodgkinson SJ, McDougall A, Beran RG. Validation of emergency and final diagnosis coding in transient ischemic attack: South Western Sydney transient ischemic attack study. Neuroepidemiology. 2010;35(1):53–8.CrossRefPubMed Ghia D, Thomas PR, Cordato DJ, Worthington JM, Cappelen-Smith C, Griffith N, Hanna I, Hodgkinson SJ, McDougall A, Beran RG. Validation of emergency and final diagnosis coding in transient ischemic attack: South Western Sydney transient ischemic attack study. Neuroepidemiology. 2010;35(1):53–8.CrossRefPubMed
34.
go back to reference McCormick N, Bhole V, Lacaille D, Avina-Zubieta J. Validity of diagnostic codes for acute stroke in administrative databases: a systematic review. PLoS ONE. 2015;10(8):e0135834.CrossRefPubMedPubMedCentral McCormick N, Bhole V, Lacaille D, Avina-Zubieta J. Validity of diagnostic codes for acute stroke in administrative databases: a systematic review. PLoS ONE. 2015;10(8):e0135834.CrossRefPubMedPubMedCentral
35.
go back to reference Skull S, Andrews R, Byrnes G, Campbell D, Nolan T, Brown G, Kelly H. ICD-10 codes are a valid tool for identification of pneumonia in hospitalized patients aged >65 years. Epidemiol Infect. 2007;136(2):232–40.PubMedPubMedCentral Skull S, Andrews R, Byrnes G, Campbell D, Nolan T, Brown G, Kelly H. ICD-10 codes are a valid tool for identification of pneumonia in hospitalized patients aged >65 years. Epidemiol Infect. 2007;136(2):232–40.PubMedPubMedCentral
36.
go back to reference Henriksen DP, Nielsen SL, Laursen CB, Hallas J, Pedersen C, Lassen AT. How well Do discharge diagnoses identify hospitalised patients with community-acquired infections? A validation study. PLoS ONE. 2014;9(3):e92891.CrossRefPubMedPubMedCentral Henriksen DP, Nielsen SL, Laursen CB, Hallas J, Pedersen C, Lassen AT. How well Do discharge diagnoses identify hospitalised patients with community-acquired infections? A validation study. PLoS ONE. 2014;9(3):e92891.CrossRefPubMedPubMedCentral
37.
go back to reference Frolova N, Bakal JA, McAlister FA, Rowe BH, Quan H, Kaul P, Ezekowitz JA. Assessing the Use of International Classification of Diseases-10th Revision Codes From the Emergency Department for the Identification of Acute Heart Failure. JACC: Heart Failure. 2015;3(5):386–91.PubMed Frolova N, Bakal JA, McAlister FA, Rowe BH, Quan H, Kaul P, Ezekowitz JA. Assessing the Use of International Classification of Diseases-10th Revision Codes From the Emergency Department for the Identification of Acute Heart Failure. JACC: Heart Failure. 2015;3(5):386–91.PubMed
38.
go back to reference Quan H, Li B, Saunders LD, Parsons GA, Nilsson CI, Alibhai A, Ghali WA. IMECCHI investigators: assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv Res. 2008;43(4):1424–41.CrossRefPubMedPubMedCentral Quan H, Li B, Saunders LD, Parsons GA, Nilsson CI, Alibhai A, Ghali WA. IMECCHI investigators: assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv Res. 2008;43(4):1424–41.CrossRefPubMedPubMedCentral
39.
go back to reference Sauerbrei W. The use of resampling methods to simplify regression models in medical statistics. J R Stat Soc: Ser C: Appl Stat. 1999;48(3):313–29.CrossRef Sauerbrei W. The use of resampling methods to simplify regression models in medical statistics. J R Stat Soc: Ser C: Appl Stat. 1999;48(3):313–29.CrossRef
40.
go back to reference Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.CrossRefPubMed Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.CrossRefPubMed
41.
go back to reference Teräsvirta T, Mellin I. Model selection criteria and model selection tests in regression models. Scand J Stat. 1986;13(3):159–71. Teräsvirta T, Mellin I. Model selection criteria and model selection tests in regression models. Scand J Stat. 1986;13(3):159–71.
42.
go back to reference Royston P, Sauerbrei W. Multivariable model-building. 1st ed. Chichester: Wiley; 2008.CrossRef Royston P, Sauerbrei W. Multivariable model-building. 1st ed. Chichester: Wiley; 2008.CrossRef
43.
go back to reference Shlipak MG, Matsushita K, Arnlov J, Inker LA, Katz R, Polkinghorne KR, Rothenbacher D, Sarnak MJ, Astor BC, Coresh J, Levey AS, Gansevoort RT. CKD Prognosis Consortium: Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369(10):932–43.CrossRefPubMedPubMedCentral Shlipak MG, Matsushita K, Arnlov J, Inker LA, Katz R, Polkinghorne KR, Rothenbacher D, Sarnak MJ, Astor BC, Coresh J, Levey AS, Gansevoort RT. CKD Prognosis Consortium: Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369(10):932–43.CrossRefPubMedPubMedCentral
44.
go back to reference Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res Methodol. 2012;12(1):82.CrossRefPubMedPubMedCentral Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res Methodol. 2012;12(1):82.CrossRefPubMedPubMedCentral
45.
go back to reference Cleves MA. From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models. Stata J. 2002;2(3):301–13. Cleves MA. From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models. Stata J. 2002;2(3):301–13.
46.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed
47.
go back to reference Paul P, Pennell ML, Lemeshow S. Standardizing the power of the Hosmer–Lemeshow goodness of fit test in large data sets. Stat Med. 2013;32(1):67–80.CrossRefPubMed Paul P, Pennell ML, Lemeshow S. Standardizing the power of the Hosmer–Lemeshow goodness of fit test in large data sets. Stat Med. 2013;32(1):67–80.CrossRefPubMed
48.
go back to reference Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: Application to the cox regression model. Stat Med. 1992;11(16):2093–109.CrossRefPubMed Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: Application to the cox regression model. Stat Med. 1992;11(16):2093–109.CrossRefPubMed
49.
go back to reference Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ. 2016;352:i6.CrossRefPubMedPubMedCentral Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ. 2016;352:i6.CrossRefPubMedPubMedCentral
50.
go back to reference Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.CrossRefPubMedPubMedCentral Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.CrossRefPubMedPubMedCentral
51.
go back to reference Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72.CrossRefPubMed Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72.CrossRefPubMed
52.
go back to reference Pencina MJ, Steyerberg EW, D’Agostino RB. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2010;30(1):11–21.CrossRefPubMedPubMedCentral Pencina MJ, Steyerberg EW, D’Agostino RB. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2010;30(1):11–21.CrossRefPubMedPubMedCentral
53.
go back to reference StataCorp. Stata statistical software: release 13. College Station: StataCorp LP; 2013. StataCorp. Stata statistical software: release 13. College Station: StataCorp LP; 2013.
59.
go back to reference Leening MJG, Vedder MM, Witteman JCM, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and Clinician’s guide. Ann Intern Med. 2014;160(2):122–31.CrossRefPubMed Leening MJG, Vedder MM, Witteman JCM, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and Clinician’s guide. Ann Intern Med. 2014;160(2):122–31.CrossRefPubMed
60.
go back to reference Thakar CV, Parikh PJ, Liu Y. Acute kidney injury (AKI) and risk of readmissions in patients with heart failure. Am J Cardiol. 2012;109(10):1482–6.CrossRefPubMed Thakar CV, Parikh PJ, Liu Y. Acute kidney injury (AKI) and risk of readmissions in patients with heart failure. Am J Cardiol. 2012;109(10):1482–6.CrossRefPubMed
61.
go back to reference Silver SA, Goldstein SL, Harel Z, et al. Ambulatory care after acute kidney injury: an opportunity to improve patient outcomes. Can J Kidney Health Dis. 2015;2:36.CrossRefPubMedPubMedCentral Silver SA, Goldstein SL, Harel Z, et al. Ambulatory care after acute kidney injury: an opportunity to improve patient outcomes. Can J Kidney Health Dis. 2015;2:36.CrossRefPubMedPubMedCentral
Metadata
Title
Acute kidney injury as an independent risk factor for unplanned 90-day hospital readmissions
Authors
Simon Sawhney
Angharad Marks
Nick Fluck
David J. McLernon
Gordon J. Prescott
Corri Black
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-016-0430-4

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue