Skip to main content
Top
Published in: BMC Nephrology 1/2016

Open Access 01-12-2016 | Research article

New congenital anomalies of the kidney and urinary tract and outcomes in Robo2 mutant mice with the inserted piggyBac transposon

Authors: Jialu Liu, Li Sun, Qian Shen, Xiaohui Wu, Hong Xu

Published in: BMC Nephrology | Issue 1/2016

Login to get access

Abstract

Background

Disruption of ROBO2 in humans causes vesicoureteral reflux (VUR)/congenital anomalies of the kidney and urinary tract (CAKUT). PiggyBac (PB) is a DNA transposon, and its insertion often reduces—but does not eliminate—gene expression. The Robo2 insertion mutant exhibited non-dilating VUR, ureteropelvic junction obstruction (UPJO) not found in reported models. We studied the incidence and outcomes of VUR/CAKUT in this mutant and explored the relationship between Robo2 gene expression and the occurrence and severity of VUR/CAKUT.

Methods

The urinary systems of newborn mutants were evaluated via Vevo 770 micro-ultrasound. Some of the normal animals—and all of the abnormal animals—were followed to adulthood and tested for VUR. Urinary obstruction experiments were performed on mice with hydronephrosis. The histology of the kidney and ureter was examined by light microscopy and transmission electron microscopy. Robo2 PB/PB mice were crossed with Hoxb7/myr-Venus mice to visualize the location of the ureters relative to the bladder.

Results

In Robo2 PB/PB mice, PB insertion led to an approximately 50 % decrease in Robo2 gene expression. The most common (27.07 %, 62/229) abnormality was non-dilating VUR, and no statistically significant differences were found between age groups. Approximately 6.97 % displayed ultrasound-detectable CAKUT, and these mice survived to adulthood without improvement. No severe CAKUT were found in Robo2 PB/+ mice. The refluxing ureters showed disorganized smooth muscle fibers, reduced muscle cell populations, intercellular edema and intracytoplasmic vacuoles in smooth muscle cells. Both UPJ and UVJ muscle defects were noted in Robo2 PB/PB mice.

Conclusions

Robo2 PB/PB mice is the first Robo2-deficient mouse model to survive to adulthood while displaying non-dilating VUR, UPJO, and multiple ureters with blind endings. The genetic background of these mutants may influence the penetrance and severity of the CAKUT phenotypes. VUR and other CAKUT found in this mutant had little chance of spontaneous resolution, and this requires careful follow-up. We reported for the first time that the non-dilated refluxing ureters showed disorganized smooth muscle fibers and altered smooth muscle cell structure, more accurately mimicking the characteristics of human cases. Future studies are required to test the role of Robo2 in the ureteric smooth muscle.
Literature
1.
go back to reference Neild GH. What do we know about chronic renal failure in young adults? I. Primary renal disease. Pediatr Nephrol. 2009;24(10):1913–9.CrossRefPubMed Neild GH. What do we know about chronic renal failure in young adults? I. Primary renal disease. Pediatr Nephrol. 2009;24(10):1913–9.CrossRefPubMed
2.
go back to reference Toka HR, Toka O, Hariri A, Nguyen HT. Congenital anomalies of kidney and urinary tract. Semin Nephrol. 2010;30(4):374–86.CrossRefPubMed Toka HR, Toka O, Hariri A, Nguyen HT. Congenital anomalies of kidney and urinary tract. Semin Nephrol. 2010;30(4):374–86.CrossRefPubMed
4.
go back to reference Dickson BJ, Gilestro GF. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol. 2006;22:651–75.CrossRefPubMed Dickson BJ, Gilestro GF. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol. 2006;22:651–75.CrossRefPubMed
5.
go back to reference Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6(5):709–17.CrossRefPubMed Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6(5):709–17.CrossRefPubMed
6.
go back to reference Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet. 2007;80(4):616–32.CrossRefPubMedPubMedCentral Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet. 2007;80(4):616–32.CrossRefPubMedPubMedCentral
7.
go back to reference Wang H, Li Q, Liu J, Mendelsohn C, Salant DJ, Lu W. Noninvasive assessment of antenatal hydronephrosis in mice reveals a critical role for robo2 in maintaining anti-reflux mechanism. PLoS One. 2011;6(9):e24763.CrossRefPubMedPubMedCentral Wang H, Li Q, Liu J, Mendelsohn C, Salant DJ, Lu W. Noninvasive assessment of antenatal hydronephrosis in mice reveals a critical role for robo2 in maintaining anti-reflux mechanism. PLoS One. 2011;6(9):e24763.CrossRefPubMedPubMedCentral
8.
go back to reference Fan X, Li Q, Pisarek-Horowitz A, Rasouly HM, Wang X, Bonegio RG, et al. Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure. Cell Rep. 2012;2(1):52–61.CrossRefPubMedPubMedCentral Fan X, Li Q, Pisarek-Horowitz A, Rasouly HM, Wang X, Bonegio RG, et al. Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure. Cell Rep. 2012;2(1):52–61.CrossRefPubMedPubMedCentral
9.
go back to reference Ji J, Li Q, Xie Y, Zhang X, Cui S, Shi S, et al. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis. Biochem Biophys Res Commun. 2012;421(3):494–500.CrossRefPubMed Ji J, Li Q, Xie Y, Zhang X, Cui S, Shi S, et al. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis. Biochem Biophys Res Commun. 2012;421(3):494–500.CrossRefPubMed
10.
go back to reference Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol. 2008;19(4):825–31.CrossRefPubMedPubMedCentral Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol. 2008;19(4):825–31.CrossRefPubMedPubMedCentral
11.
go back to reference Dobson MG, Darlow JM, Hunziker M, Green AJ, Barton DE, Puri P. Heterozygous non-synonymous ROBO2 variants are unlikely to be sufficient to cause familial vesicoureteric reflux. Kidney Int. 2013;84(2):327–37.CrossRefPubMed Dobson MG, Darlow JM, Hunziker M, Green AJ, Barton DE, Puri P. Heterozygous non-synonymous ROBO2 variants are unlikely to be sufficient to cause familial vesicoureteric reflux. Kidney Int. 2013;84(2):327–37.CrossRefPubMed
12.
go back to reference Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol. 2010;21(1):113–23.CrossRefPubMedPubMedCentral Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol. 2010;21(1):113–23.CrossRefPubMedPubMedCentral
13.
go back to reference Zu S, Bartik Z, Zhao S, Sillen U, Nordenskjold A. Mutations in the ROBO2 and SLIT2 genes are rare causes of familial vesico-ureteral reflux. Pediatr Nephrol. 2009;24(8):1501–8.CrossRefPubMed Zu S, Bartik Z, Zhao S, Sillen U, Nordenskjold A. Mutations in the ROBO2 and SLIT2 genes are rare causes of familial vesico-ureteral reflux. Pediatr Nephrol. 2009;24(8):1501–8.CrossRefPubMed
14.
go back to reference Sanna-Cherchi S, Reese A, Hensle T, Caridi G, Izzi C, Kim YY, et al. Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J Am Soc Nephrol. 2005;16(6):1781–7.CrossRefPubMed Sanna-Cherchi S, Reese A, Hensle T, Caridi G, Izzi C, Kim YY, et al. Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J Am Soc Nephrol. 2005;16(6):1781–7.CrossRefPubMed
15.
go back to reference Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1429–33.CrossRefPubMedPubMedCentral Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1429–33.CrossRefPubMedPubMedCentral
16.
go back to reference Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122(3):473–83.CrossRefPubMed Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122(3):473–83.CrossRefPubMed
17.
go back to reference Chi X, Hadjantonakis AK, Wu Z, Hyink D, Costantini F. A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis. 2009;47(2):61–6.CrossRefPubMedPubMedCentral Chi X, Hadjantonakis AK, Wu Z, Hyink D, Costantini F. A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis. 2009;47(2):61–6.CrossRefPubMedPubMedCentral
18.
go back to reference Miller MM, Iglesias DM, Zhang Z, Corsini R, Chu L, Murawski I, et al. T-cell factor/beta-catenin activity is suppressed in two different models of autosomal dominant polycystic kidney disease. Kidney Int. 2011;80(2):146–53.CrossRefPubMed Miller MM, Iglesias DM, Zhang Z, Corsini R, Chu L, Murawski I, et al. T-cell factor/beta-catenin activity is suppressed in two different models of autosomal dominant polycystic kidney disease. Kidney Int. 2011;80(2):146–53.CrossRefPubMed
19.
go back to reference Murawski IJ, Myburgh DB, Favor J, Gupta IR. Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/− mouse. Am J Physiol Renal Physiol. 2007;293(5):F1736–45.CrossRefPubMed Murawski IJ, Myburgh DB, Favor J, Gupta IR. Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/− mouse. Am J Physiol Renal Physiol. 2007;293(5):F1736–45.CrossRefPubMed
20.
go back to reference Murawski IJ, Watt CL, Gupta IR. Assessing urinary tract defects in mice: methods to detect the presence of vesicoureteric reflux and urinary tract obstruction. Methods Mol Biol. 2012;886:351–62.CrossRefPubMed Murawski IJ, Watt CL, Gupta IR. Assessing urinary tract defects in mice: methods to detect the presence of vesicoureteric reflux and urinary tract obstruction. Methods Mol Biol. 2012;886:351–62.CrossRefPubMed
21.
go back to reference Murawski IJ, Maina RW, Malo D, Guay-Woodford LM, Gros P, Fujiwara M, et al. The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int. 2010;78(3):269–78.CrossRefPubMed Murawski IJ, Maina RW, Malo D, Guay-Woodford LM, Gros P, Fujiwara M, et al. The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int. 2010;78(3):269–78.CrossRefPubMed
22.
go back to reference van Eerde AM, Duran K, van Riel E, de Kovel CG, Koeleman BP, Knoers NV, et al. Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PLoS One. 2012;7(4):e31327.CrossRefPubMedPubMedCentral van Eerde AM, Duran K, van Riel E, de Kovel CG, Koeleman BP, Knoers NV, et al. Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PLoS One. 2012;7(4):e31327.CrossRefPubMedPubMedCentral
23.
go back to reference Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell. 1998;92(2):205–15.CrossRefPubMed Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell. 1998;92(2):205–15.CrossRefPubMed
24.
go back to reference Englund C, Steneberg P, Falileeva L, Xylourgidis N, Samakovlis C. Attractive and repulsive functions of Slit are mediated by different receptors in the Drosophila trachea. Development. 2002;129(21):4941–51.PubMed Englund C, Steneberg P, Falileeva L, Xylourgidis N, Samakovlis C. Attractive and repulsive functions of Slit are mediated by different receptors in the Drosophila trachea. Development. 2002;129(21):4941–51.PubMed
26.
go back to reference Nordenskjold A. Genetic Aspects of Congenital Urologic Anomalies. Eur Urol Suppl. 2015;14(1):2–8.CrossRef Nordenskjold A. Genetic Aspects of Congenital Urologic Anomalies. Eur Urol Suppl. 2015;14(1):2–8.CrossRef
27.
go back to reference Williams G, Fletcher JT, Alexander SI, Craig JC. Vesicoureteral reflux. J Am Soc Nephrol. 2008;19(5):847–62.CrossRefPubMed Williams G, Fletcher JT, Alexander SI, Craig JC. Vesicoureteral reflux. J Am Soc Nephrol. 2008;19(5):847–62.CrossRefPubMed
28.
go back to reference Gearhart JP, Lee BR, Partin AW, Epstein JI, Gosling JA. A quantitative histological evaluation of the dilated ureter of childhood. II: Ectopia, posterior urethral valves and the prune belly syndrome. J Urol. 1995;153(1):172–6.CrossRefPubMed Gearhart JP, Lee BR, Partin AW, Epstein JI, Gosling JA. A quantitative histological evaluation of the dilated ureter of childhood. II: Ectopia, posterior urethral valves and the prune belly syndrome. J Urol. 1995;153(1):172–6.CrossRefPubMed
29.
go back to reference Oswald J, Brenner E, Schwentner C, Deibl M, Bartsch G, Fritsch H, et al. The intravesical ureter in children with vesicoureteral reflux: a morphological and immunohistochemical characterization. J Urol. 2003;170(6 Pt 1):2423–7.CrossRefPubMed Oswald J, Brenner E, Schwentner C, Deibl M, Bartsch G, Fritsch H, et al. The intravesical ureter in children with vesicoureteral reflux: a morphological and immunohistochemical characterization. J Urol. 2003;170(6 Pt 1):2423–7.CrossRefPubMed
30.
go back to reference Izol V, Acikalin AA, Kuyucu Y, Deger M, Aridogan IA, Polat S, et al. Ultrastructural and immunohistopathological evaluation of intravesical ureters via electron and light microscopy in children with vesicoureteral reflux. J Urol. 2014;191(4):1110–7. doi:10.1016/j.juro.2013.10.038.CrossRefPubMed Izol V, Acikalin AA, Kuyucu Y, Deger M, Aridogan IA, Polat S, et al. Ultrastructural and immunohistopathological evaluation of intravesical ureters via electron and light microscopy in children with vesicoureteral reflux. J Urol. 2014;191(4):1110–7. doi:10.​1016/​j.​juro.​2013.​10.​038.CrossRefPubMed
31.
go back to reference Sofikerim M, Sargon M, Oruc O, Dogan HS, Tekgul S. An electron microscopic examination of the intravesical ureter in children with primary vesico-ureteric reflux. BJU Int. 2007;99(5):1127–31.CrossRefPubMed Sofikerim M, Sargon M, Oruc O, Dogan HS, Tekgul S. An electron microscopic examination of the intravesical ureter in children with primary vesico-ureteric reflux. BJU Int. 2007;99(5):1127–31.CrossRefPubMed
32.
go back to reference Arena S, Fazzari C, Arena F, Scuderi MG, Romeo C, Nicotina PA, et al. Altered ‘active’ antireflux mechanism in primary vesico-ureteric reflux: a morphological and manometric study. BJU Int. 2007;100(2):407–12.CrossRefPubMed Arena S, Fazzari C, Arena F, Scuderi MG, Romeo C, Nicotina PA, et al. Altered ‘active’ antireflux mechanism in primary vesico-ureteric reflux: a morphological and manometric study. BJU Int. 2007;100(2):407–12.CrossRefPubMed
33.
go back to reference Oswald J, Schwentner C, Brenner E, Deibl M, Fritsch H, Bartsch G, et al. Extracellular matrix degradation and reduced nerve supply in refluxing ureteral endings. J Urol. 2004;172(3):1099–102.CrossRefPubMed Oswald J, Schwentner C, Brenner E, Deibl M, Fritsch H, Bartsch G, et al. Extracellular matrix degradation and reduced nerve supply in refluxing ureteral endings. J Urol. 2004;172(3):1099–102.CrossRefPubMed
34.
go back to reference Schwentner C, Oswald J, Lunacek A, Schlenck B, Berger AP, Deibl M, et al. Structural changes of the intravesical ureter in children with vesicoureteral reflux-does ischemia have a role? J Urol. 2006;176(5):2212–8.CrossRefPubMed Schwentner C, Oswald J, Lunacek A, Schlenck B, Berger AP, Deibl M, et al. Structural changes of the intravesical ureter in children with vesicoureteral reflux-does ischemia have a role? J Urol. 2006;176(5):2212–8.CrossRefPubMed
35.
go back to reference Bowen SE, Watt CL, Murawski IJ, Gupta IR, Abraham SN. Interplay between vesicoureteric reflux and kidney infection in the development of reflux nephropathy in mice. Dis Model Mech. 2013;6(4):934–41.CrossRefPubMedPubMedCentral Bowen SE, Watt CL, Murawski IJ, Gupta IR, Abraham SN. Interplay between vesicoureteric reflux and kidney infection in the development of reflux nephropathy in mice. Dis Model Mech. 2013;6(4):934–41.CrossRefPubMedPubMedCentral
36.
go back to reference Ismaili K, Hall M, Piepsz A, Wissing KM, Collier F, Schulman C, et al. Primary vesicoureteral reflux detected in neonates with a history of fetal renal pelvis dilatation: a prospective clinical and imaging study. J Pediatr. 2006;148(2):222–7.CrossRefPubMed Ismaili K, Hall M, Piepsz A, Wissing KM, Collier F, Schulman C, et al. Primary vesicoureteral reflux detected in neonates with a history of fetal renal pelvis dilatation: a prospective clinical and imaging study. J Pediatr. 2006;148(2):222–7.CrossRefPubMed
37.
go back to reference Montini G, Tullus K, Hewitt I. Febrile urinary tract infections in children. N Engl J Med. 2011;365(3):239–50.CrossRefPubMed Montini G, Tullus K, Hewitt I. Febrile urinary tract infections in children. N Engl J Med. 2011;365(3):239–50.CrossRefPubMed
38.
go back to reference Constantinou CE, Yamaguchi O. Multiple-coupled pacemaker system in renal pelvis of the unicalyceal kidney. Am J Physiol. 1981;241(5):R412–8.PubMed Constantinou CE, Yamaguchi O. Multiple-coupled pacemaker system in renal pelvis of the unicalyceal kidney. Am J Physiol. 1981;241(5):R412–8.PubMed
39.
go back to reference Viana R, Batourina E, Huang H, Dressler GR, Kobayashi A, Behringer RR, et al. The development of the bladder trigone, the center of the anti-reflux mechanism. Development. 2007;134(20):3763–9.CrossRefPubMed Viana R, Batourina E, Huang H, Dressler GR, Kobayashi A, Behringer RR, et al. The development of the bladder trigone, the center of the anti-reflux mechanism. Development. 2007;134(20):3763–9.CrossRefPubMed
40.
go back to reference Tanagho EA, Guthrie TH, Lyon RP. The intravesical ureter in primary reflux. J Urol. 1969;101(6):824–32.PubMed Tanagho EA, Guthrie TH, Lyon RP. The intravesical ureter in primary reflux. J Urol. 1969;101(6):824–32.PubMed
41.
go back to reference Wang GJ, Brenner-Anantharam A, Vaughan ED, Herzlinger D. Antagonism of BMP4 signaling disrupts smooth muscle investment of the ureter and ureteropelvic junction. J Urol. 2009;181(1):401–7.CrossRefPubMed Wang GJ, Brenner-Anantharam A, Vaughan ED, Herzlinger D. Antagonism of BMP4 signaling disrupts smooth muscle investment of the ureter and ureteropelvic junction. J Urol. 2009;181(1):401–7.CrossRefPubMed
42.
go back to reference Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H, et al. Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase. J Biol Chem. 2003;278(24):21685–92.CrossRefPubMed Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H, et al. Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase. J Biol Chem. 2003;278(24):21685–92.CrossRefPubMed
43.
go back to reference Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci. 2003;116(Pt 13):2613–26.CrossRefPubMed Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci. 2003;116(Pt 13):2613–26.CrossRefPubMed
44.
go back to reference Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell. 2000;101(7):703–15.CrossRefPubMed Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell. 2000;101(7):703–15.CrossRefPubMed
46.
go back to reference Mackie GG, Stephens FD. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol. 1975;114(2):274–80.PubMed Mackie GG, Stephens FD. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol. 1975;114(2):274–80.PubMed
Metadata
Title
New congenital anomalies of the kidney and urinary tract and outcomes in Robo2 mutant mice with the inserted piggyBac transposon
Authors
Jialu Liu
Li Sun
Qian Shen
Xiaohui Wu
Hong Xu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2016
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-016-0308-5

Other articles of this Issue 1/2016

BMC Nephrology 1/2016 Go to the issue