Skip to main content
Top
Published in: BMC Nephrology 1/2016

Open Access 01-12-2016 | Research article

Relationship of urinary endothelin-1 with estimated glomerular filtration rate in autosomal dominant polycystic kidney disease: a pilot cross-sectional analysis

Authors: Rupesh Raina, Linda Lou, Bruce Berger, Beth Vogt, Angelique Sao-Mai Do, Robert Cunningham, Pauravi Vasavada, Karin Herrmann, Katherine Dell, Michael Simonson

Published in: BMC Nephrology | Issue 1/2016

Login to get access

Abstract

Background

The pathogenesis of progressive renal insufficiency in autosomal dominant polycystic kidney disease (ADPKD) is unclear. Evidence from experimental models of ADPKD suggests that elevated endothelin-1 (ET-1) drives cyst growth, renal fibrosis and loss of renal function, but whether ET-1 is elevated in humans with ADPKD is uncertain.

Methods

In a cross-sectional study of ADPKD we measured urinary ET-1, a surrogate for ET-1 in kidney cortex, in spot collections corrected for creatinine. The volume of each kidney was measured using MRI-based stereology. The relationship of urine ET-1 with MDRD eGFR and kidney volume was modeled by multiple linear regression with adjustment for clinical covariates.

Results

Patients with ADPKD were ages 18 to 53 with eGFRs (median, interquartile range) of 63.2 (43.5–80.2) ml/min/1.73 m2 and albumin/creatinine ratios (ACR) of 115.0 (7.5–58.5) μg/mg. Urine ET-1 was inversely associated with eGFR (r = −0.480, P < 0.05) and positively (r = 0.407, P = 0.066) with ACR independent of age and female sex (P < 0.01). ET-1 appeared to be positively associated with total kidney volume (r = 0.426, P = 0.100), with a test for trend across urine ET-1 quartiles yielding z = 1.83, P = 0.068. ET-1 strongly correlated with NAGase (r = 0. 687, P = 0.001), a marker of tubular damage and a surrogate marker of renal disease progression in ADPKD. Of note, ET-1 levels in urine were not correlated with hypertension.

Conclusions

In a translational study of patients with ADPKD, urinary ET-1 was inversely associated with eGFR and positively correlated with total kidney volume. Taken together with results from experimental models, these findings suggest that the role of ET-1 in ADPKD warrants further investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359:1477–85.CrossRefPubMed Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359:1477–85.CrossRefPubMed
3.
go back to reference Chang M-Y, Ong ACM. New treatments for autosomal dominant polycystic kidney disease. Brit J Clin Pharm. 2013;76:524–35.PubMedPubMedCentral Chang M-Y, Ong ACM. New treatments for autosomal dominant polycystic kidney disease. Brit J Clin Pharm. 2013;76:524–35.PubMedPubMedCentral
4.
go back to reference Yanagisawa M, Kurihara H, Kimura S, Tombe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.CrossRefPubMed Yanagisawa M, Kurihara H, Kimura S, Tombe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.CrossRefPubMed
5.
go back to reference Simonson MS. Endothelins: Multifunctional renal peptides. Physiol Rev. 1993;73:375–411.PubMed Simonson MS. Endothelins: Multifunctional renal peptides. Physiol Rev. 1993;73:375–411.PubMed
6.
go back to reference Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol. 2008;86:485–98.CrossRefPubMed Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol. 2008;86:485–98.CrossRefPubMed
7.
go back to reference Hocher B, Thone-Reineke C, Rohmeiss P, Schmager F, Slowinski T, Burst V, et al. Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest. 1997;99:1380–9.CrossRefPubMedPubMedCentral Hocher B, Thone-Reineke C, Rohmeiss P, Schmager F, Slowinski T, Burst V, et al. Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest. 1997;99:1380–9.CrossRefPubMedPubMedCentral
8.
go back to reference Rocco MV, Neilson EG, Hoyer JR, Ziyadeh FN. Attenuated expression of epithelial cell adhesion molecules in murine polycystic kidney disease. Am J Physiol Renal Physiol. 1992;262:F679–86. Rocco MV, Neilson EG, Hoyer JR, Ziyadeh FN. Attenuated expression of epithelial cell adhesion molecules in murine polycystic kidney disease. Am J Physiol Renal Physiol. 1992;262:F679–86.
9.
go back to reference Nakamura T, Ebihara I, Fukui M, Osada S, Tomino Y, Masaki T, et al. Increased endothelin and endothelin receptor mRNA expression in polycystic kidneys of cpk mice. J Am Soc Nephrol. 1993;4:1064–72.PubMed Nakamura T, Ebihara I, Fukui M, Osada S, Tomino Y, Masaki T, et al. Increased endothelin and endothelin receptor mRNA expression in polycystic kidneys of cpk mice. J Am Soc Nephrol. 1993;4:1064–72.PubMed
10.
go back to reference Hocher B, Zart R, Schwarz A, Vogt V, Braun C, Thone-Reineke C, et al. Renal endothelin system in polycystic kidney disease. J Am Soc Nephrol. 1998;9:1169–77.PubMed Hocher B, Zart R, Schwarz A, Vogt V, Braun C, Thone-Reineke C, et al. Renal endothelin system in polycystic kidney disease. J Am Soc Nephrol. 1998;9:1169–77.PubMed
11.
go back to reference Ong AC, Newby LJ, Dashwood M. Expression and cellular localization of renal endothelin-1 and endothelin receptor subtypes in autosomal dominant polycystic kidney disease. Nephron Exp Nephrol. 2003;93:e80.CrossRefPubMed Ong AC, Newby LJ, Dashwood M. Expression and cellular localization of renal endothelin-1 and endothelin receptor subtypes in autosomal dominant polycystic kidney disease. Nephron Exp Nephrol. 2003;93:e80.CrossRefPubMed
12.
go back to reference Grenda R, Wuhl E, Litwin M, Janas R, Sladowska J, Arbeiter K, et al. Urinary excretion of endothelin-1 (ET-1), transforming growth factor- β1 (TGF- β1) and vascular endothelial growth factor (VEGF165) in paediatric chronic kidney diseases: results of the ESCAPE trial. Nephrol Dial Transplant. 2007;22:3487–94.CrossRefPubMed Grenda R, Wuhl E, Litwin M, Janas R, Sladowska J, Arbeiter K, et al. Urinary excretion of endothelin-1 (ET-1), transforming growth factor- β1 (TGF- β1) and vascular endothelial growth factor (VEGF165) in paediatric chronic kidney diseases: results of the ESCAPE trial. Nephrol Dial Transplant. 2007;22:3487–94.CrossRefPubMed
13.
go back to reference Benigni A, Perico N, Gaspari F, Zoja C, Bellizzi L, Gabanelli M, et al. Increased renal endothelin production in rats with reduced renal mass. Am J Physiol. 1991;260:F331–9.PubMed Benigni A, Perico N, Gaspari F, Zoja C, Bellizzi L, Gabanelli M, et al. Increased renal endothelin production in rats with reduced renal mass. Am J Physiol. 1991;260:F331–9.PubMed
14.
go back to reference Burkhardt M, Barton M, Shaw SG. Receptor- and non-receptor-mediated clearance of big-endothelin and endothelin-1: differential effects of acute and chronic ETA receptor blockade. J Hypertens. 2000;18:273–9.CrossRefPubMed Burkhardt M, Barton M, Shaw SG. Receptor- and non-receptor-mediated clearance of big-endothelin and endothelin-1: differential effects of acute and chronic ETA receptor blockade. J Hypertens. 2000;18:273–9.CrossRefPubMed
15.
go back to reference Dupuis J, Stewart DJ, Cernacek P, Gosselin G. Human pulmonary circulation is an important site for both clearance and production of endothelin-1. Circulation. 1996;94:1578–84.CrossRefPubMed Dupuis J, Stewart DJ, Cernacek P, Gosselin G. Human pulmonary circulation is an important site for both clearance and production of endothelin-1. Circulation. 1996;94:1578–84.CrossRefPubMed
16.
go back to reference Gasic S, Wagner OF, Vierhapper H, Nowotny P, Waldhausl W. Regional hemodynamic effects and clearance of endothelin-1 in humans: renal and peripheral tissues may contribute to the overall disposal of the peptide. J Cardiovasc Pharmacol. 1992;19:176–80.CrossRefPubMed Gasic S, Wagner OF, Vierhapper H, Nowotny P, Waldhausl W. Regional hemodynamic effects and clearance of endothelin-1 in humans: renal and peripheral tissues may contribute to the overall disposal of the peptide. J Cardiovasc Pharmacol. 1992;19:176–80.CrossRefPubMed
17.
go back to reference Simonson MS, Tiktin M, Debanne SM, Rahman M, Berger B, Hricik D, et al. The renal transcriptome of db/db mice identifies putative urinary biomarker proteins in patients with type 2 diabetes: a pilot study. Am J Physiol Renal Physiol. 2012;302:F820–9.CrossRefPubMed Simonson MS, Tiktin M, Debanne SM, Rahman M, Berger B, Hricik D, et al. The renal transcriptome of db/db mice identifies putative urinary biomarker proteins in patients with type 2 diabetes: a pilot study. Am J Physiol Renal Physiol. 2012;302:F820–9.CrossRefPubMed
18.
go back to reference Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, et al. Unified Criteria for Ultrasonographic Diagnosis of ADPKD. J Am Soc Nephrol. 2009;20:205–12.CrossRefPubMedPubMedCentral Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, et al. Unified Criteria for Ultrasonographic Diagnosis of ADPKD. J Am Soc Nephrol. 2009;20:205–12.CrossRefPubMedPubMedCentral
19.
go back to reference Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann Intern Med. 2006;145:247–54.CrossRefPubMed Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann Intern Med. 2006;145:247–54.CrossRefPubMed
22.
go back to reference Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort1. Kidney Int. 2003;64:1035–45.CrossRefPubMed Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort1. Kidney Int. 2003;64:1035–45.CrossRefPubMed
23.
go back to reference Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–86.CrossRefPubMedPubMedCentral Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–86.CrossRefPubMedPubMedCentral
24.
go back to reference Dhaun N, Lilitkarntakul P, Macintyre IM, Muilwijk E, Johnston NR, Kluth DC, et al. Urinary endothelin-1 in chronic kidney disease and as a marker of disease activity in lupus nephritis. Am J Physiol Renal Physiol. 2009;296:F1477–83.CrossRefPubMedPubMedCentral Dhaun N, Lilitkarntakul P, Macintyre IM, Muilwijk E, Johnston NR, Kluth DC, et al. Urinary endothelin-1 in chronic kidney disease and as a marker of disease activity in lupus nephritis. Am J Physiol Renal Physiol. 2009;296:F1477–83.CrossRefPubMedPubMedCentral
25.
go back to reference Fraser CG. Biological Variation: From Principles to Practice. Washington: AACC Press; 2001. Fraser CG. Biological Variation: From Principles to Practice. Washington: AACC Press; 2001.
26.
go back to reference Bourbouze R, Baumann FC, Bonvalet JP, Farman N. Distribution of N-acetyl-beta-D-glucosaminidase isoenzymes along the rabbit nephron. Kidney Int. 1984;25:636–42.CrossRefPubMed Bourbouze R, Baumann FC, Bonvalet JP, Farman N. Distribution of N-acetyl-beta-D-glucosaminidase isoenzymes along the rabbit nephron. Kidney Int. 1984;25:636–42.CrossRefPubMed
27.
go back to reference Tucker SM, Pierce RJ, Price RG. Characterisation of human N-acetyl-beta-D-glucosaminidase isoenzymes as an indicator of tissue damage in disease. Clin Chim Acta. 1980;102:29–40.CrossRefPubMed Tucker SM, Pierce RJ, Price RG. Characterisation of human N-acetyl-beta-D-glucosaminidase isoenzymes as an indicator of tissue damage in disease. Clin Chim Acta. 1980;102:29–40.CrossRefPubMed
29.
go back to reference Zager RA, Johnson ACM, Andress D, Becker K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 2013;84:703–12.CrossRefPubMedPubMedCentral Zager RA, Johnson ACM, Andress D, Becker K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 2013;84:703–12.CrossRefPubMedPubMedCentral
30.
go back to reference Hocher B, Kalk P, Slowinski T, Godes M, Mach A, Herzfeld S, et al. ETA Receptor Blockade Induces Tubular Cell Proliferation and Cyst Growth in Rats with Polycystic Kidney Disease. J Am Soc Nephrol. 2003;14:367–76.CrossRefPubMed Hocher B, Kalk P, Slowinski T, Godes M, Mach A, Herzfeld S, et al. ETA Receptor Blockade Induces Tubular Cell Proliferation and Cyst Growth in Rats with Polycystic Kidney Disease. J Am Soc Nephrol. 2003;14:367–76.CrossRefPubMed
31.
go back to reference Park HC, Hwang JH, Kang AY, Ro H, Kim MG, An JN, et al. Urinary N-acetyl-beta-D glucosaminidase as a surrogate marker for renal function in autosomal dominant polycystic kidney disease: 1 year prospective cohort study. BMC Nephrol. 2012;13:93.CrossRefPubMedPubMedCentral Park HC, Hwang JH, Kang AY, Ro H, Kim MG, An JN, et al. Urinary N-acetyl-beta-D glucosaminidase as a surrogate marker for renal function in autosomal dominant polycystic kidney disease: 1 year prospective cohort study. BMC Nephrol. 2012;13:93.CrossRefPubMedPubMedCentral
32.
go back to reference Meijer E. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kidney Dis. 2010;56:883–95.CrossRefPubMed Meijer E. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kidney Dis. 2010;56:883–95.CrossRefPubMed
33.
go back to reference Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.CrossRefPubMed Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.CrossRefPubMed
34.
go back to reference Grantham JJ, Mulamalla S, Swenson-Fields KI. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol. 2011;7:556–66.CrossRefPubMed Grantham JJ, Mulamalla S, Swenson-Fields KI. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol. 2011;7:556–66.CrossRefPubMed
35.
go back to reference Chang MY, Parker E, El Nahas M, Haylor JL, Ong AC. Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2007;18:560–9.CrossRefPubMed Chang MY, Parker E, El Nahas M, Haylor JL, Ong AC. Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2007;18:560–9.CrossRefPubMed
36.
go back to reference Barton M, Kohan DE. Endothelin in Renal Physiology and Disease. Contributions to Nephrology. Basel: Karger AG; 2011.CrossRef Barton M, Kohan DE. Endothelin in Renal Physiology and Disease. Contributions to Nephrology. Basel: Karger AG; 2011.CrossRef
37.
go back to reference Barton M. Reversal of proteinuric renal disease and the emerging role of endothelin. Nat Clin Pract Nephrol. 2008;4:490–501.CrossRefPubMed Barton M. Reversal of proteinuric renal disease and the emerging role of endothelin. Nat Clin Pract Nephrol. 2008;4:490–501.CrossRefPubMed
38.
go back to reference Neuhofer W, Pittrow D. Endothelin receptor selectivity in chronic kidney disease: rationale and review of recent evidence. Eur J Clin Invest. 2009;39:50–67.CrossRefPubMed Neuhofer W, Pittrow D. Endothelin receptor selectivity in chronic kidney disease: rationale and review of recent evidence. Eur J Clin Invest. 2009;39:50–67.CrossRefPubMed
Metadata
Title
Relationship of urinary endothelin-1 with estimated glomerular filtration rate in autosomal dominant polycystic kidney disease: a pilot cross-sectional analysis
Authors
Rupesh Raina
Linda Lou
Bruce Berger
Beth Vogt
Angelique Sao-Mai Do
Robert Cunningham
Pauravi Vasavada
Karin Herrmann
Katherine Dell
Michael Simonson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2016
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-016-0232-8

Other articles of this Issue 1/2016

BMC Nephrology 1/2016 Go to the issue