Skip to main content
Top
Published in: BMC Nephrology 1/2015

Open Access 01-12-2015 | Research article

Urinary phosphorus excretion per creatinine clearance as a prognostic marker for progression of chronic kidney disease: a retrospective cohort study

Authors: Tomoki Kawasaki, Yoshitaka Maeda, Hisazumi Matsuki, Yuko Matsumoto, Masanobu Akazawa, Tamaki Kuyama

Published in: BMC Nephrology | Issue 1/2015

Login to get access

Abstract

Background

Whether phosphate itself has nephrotoxicity in patients with chronic kidney disease (CKD) is controversial, although phosphate excretion into urine may cause tubular damage in rat models. To evaluate actual phosphate load on each nephron, we examined the association between 24-h urinary phosphorus excretion per creatinine clearance (24-h U-P/CCr), a newly proposed index that is a surrogate for nephron load, and CKD progression in patients with CKD.

Methods

We conducted a single-center, retrospective cohort study. To avoid potential confounders for protein intake, only patients on our educational program for CKD with a fixed diet regimen and aged 20 years or older were included. The observation period was 3 years. Primary outcomes were CKD progression defined as a composite of end-stage kidney disease (ESKD) or 50 % reduction of estimated glomerular filtration rate. Patients were stratified by quartiles of 24-h U-P/CCr levels as Quartiles 1–4. The association was examined in three models: unadjusted (Model 1), adjusted for risk factors for CKD progression (Model 2), and factors that affect renal phosphate handling (Model 3).

Results

A total of 191 patients met the eligibility criteria. Patients with higher 24-h U-P/CCr showed a higher risk for the composite outcomes. The hazard ratios [95 % confidence interval] for 24-h U-P/CCr levels in Quartile 2, 3, and 4, respectively, versus Quartile 1 were 2.56 (1.15–6.24), 7.53 (3.63–17.62), and 12.17 (5.82–28.64) in Model 1; 1.66 (0.63–4.97), 3.57 (1.25–11.71), and 5.34 (1.41–22.32) in Model 2; and 3.07 (0.97–11.85), 7.52 (2.13–32.69), and 7.89 (1.74–44.33) in Model 3.

Conclusions

Our study showed that higher phosphorus excretion per creatinine clearance was associated with CKD progression.
Literature
1.
go back to reference Palmer SC, Hayen A, Macaskill P, et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA. 2011;305:1119–27.CrossRefPubMed Palmer SC, Hayen A, Macaskill P, et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA. 2011;305:1119–27.CrossRefPubMed
2.
go back to reference Muntner P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13:745–53.PubMed Muntner P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13:745–53.PubMed
3.
go back to reference Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.CrossRefPubMed Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.CrossRefPubMed
4.
go back to reference Schwarz S, Trivedi BK, Kalantar-Zadeh K, Kovesdy CP. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin J Am Soc Nephrol. 2006;1:825–31.CrossRefPubMed Schwarz S, Trivedi BK, Kalantar-Zadeh K, Kovesdy CP. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin J Am Soc Nephrol. 2006;1:825–31.CrossRefPubMed
5.
go back to reference Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305:1553–9.CrossRefPubMed Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305:1553–9.CrossRefPubMed
6.
go back to reference Barsotti G, Morelli E, Giannoni A, Guiducci A, Lupetti S, Giovannetti S. Restricted phosphorus and nitrogen intake to slow the progression of chronic renal failure: a controlled trial. Kidney Int Suppl. 1983;16:S278–84.PubMed Barsotti G, Morelli E, Giannoni A, Guiducci A, Lupetti S, Giovannetti S. Restricted phosphorus and nitrogen intake to slow the progression of chronic renal failure: a controlled trial. Kidney Int Suppl. 1983;16:S278–84.PubMed
9.
go back to reference Kuro-o M. A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease. Kideny Int Suppl. 2013;3:420–6.CrossRef Kuro-o M. A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease. Kideny Int Suppl. 2013;3:420–6.CrossRef
10.
go back to reference Haut LL, Alfrey AC, Guggenheim S, Buddington B, Schrier N. Renal toxicity of phosphate in rats. Kideny Int. 1980;17:722–31.CrossRef Haut LL, Alfrey AC, Guggenheim S, Buddington B, Schrier N. Renal toxicity of phosphate in rats. Kideny Int. 1980;17:722–31.CrossRef
11.
go back to reference Fulladosa X, Moreso F, Naráez JA, Grinyó JM, Serón D. Estimation of total glomerular number in stable renal transplants. J Am Soc Nephrol. 2003;14:2662–8.CrossRefPubMed Fulladosa X, Moreso F, Naráez JA, Grinyó JM, Serón D. Estimation of total glomerular number in stable renal transplants. J Am Soc Nephrol. 2003;14:2662–8.CrossRefPubMed
12.
13.
go back to reference Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kideny Dis. 2009;53:982–92.CrossRef Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kideny Dis. 2009;53:982–92.CrossRef
14.
go back to reference Pan Y, Guo LL, Jin HM. Low- protein diet for diabetic nephropathy: a meta- analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:660–6.PubMed Pan Y, Guo LL, Jin HM. Low- protein diet for diabetic nephropathy: a meta- analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:660–6.PubMed
15.
go back to reference Nagano N, Miyata S, Obana S, et al. Sevelamer hydrochloride, a phosphate binder, protects against deterioration of renal function in rats with progressive chronic renal in sufficiency. Nephrol Dial Transplant. 2003;18:2014–23.CrossRefPubMed Nagano N, Miyata S, Obana S, et al. Sevelamer hydrochloride, a phosphate binder, protects against deterioration of renal function in rats with progressive chronic renal in sufficiency. Nephrol Dial Transplant. 2003;18:2014–23.CrossRefPubMed
16.
go back to reference Colin CD, Edwards NC, Davis LJ, Steeds RP, Townend JN, Ferro CJ. Serum phosphate but not pulse wave velocity predicts decline in renal function in patients with early chronic kidney disease. Nephrol Dial Transplant. 2011;26:2576–82.CrossRef Colin CD, Edwards NC, Davis LJ, Steeds RP, Townend JN, Ferro CJ. Serum phosphate but not pulse wave velocity predicts decline in renal function in patients with early chronic kidney disease. Nephrol Dial Transplant. 2011;26:2576–82.CrossRef
17.
go back to reference Norris KC, Greene T, Kopple J, et al. Baseline predictors of renal disease progression in the African American Study of Hypertension and Kidney Disease. J Am Soc Nephrol. 2006;17:2928–36.CrossRefPubMed Norris KC, Greene T, Kopple J, et al. Baseline predictors of renal disease progression in the African American Study of Hypertension and Kidney Disease. J Am Soc Nephrol. 2006;17:2928–36.CrossRefPubMed
18.
go back to reference Aihara K, Byer KJ, Khan SR. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int. 2003;64:1283–91.CrossRefPubMed Aihara K, Byer KJ, Khan SR. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int. 2003;64:1283–91.CrossRefPubMed
19.
go back to reference Hong YA, Lim JH, Kim MY, et al. Assessment of tubular reabsorption of phosphate as a surrogate marker for phosphate regulation in chronic kidney disease. Clin Exp Nephrol. 2015;19(2):208–15.CrossRefPubMed Hong YA, Lim JH, Kim MY, et al. Assessment of tubular reabsorption of phosphate as a surrogate marker for phosphate regulation in chronic kidney disease. Clin Exp Nephrol. 2015;19(2):208–15.CrossRefPubMed
20.
go back to reference Slatopolsky E. The intact nephron hypothesis: the concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kideny Int Suppl. 2011;121:S3–8.CrossRef Slatopolsky E. The intact nephron hypothesis: the concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kideny Int Suppl. 2011;121:S3–8.CrossRef
21.
go back to reference Bech AP, Bouma-de Krijger A, van Zuilen AD, et al. Impact of fractional phosphate excretion on the relation of FGF23 with outcome in CKD patients. J Nephrol. 2015. Epub ahead of print Bech AP, Bouma-de Krijger A, van Zuilen AD, et al. Impact of fractional phosphate excretion on the relation of FGF23 with outcome in CKD patients. J Nephrol. 2015. Epub ahead of print
22.
go back to reference Craver L, Marco MP, Martinez I, et al. Mineral metabolism parameters throughout chronic kidney disease stages 1-5—achievement of K/DOQI target ranges. Nephrol Dial Transplant. 2007;22:1171–6.CrossRefPubMed Craver L, Marco MP, Martinez I, et al. Mineral metabolism parameters throughout chronic kidney disease stages 1-5—achievement of K/DOQI target ranges. Nephrol Dial Transplant. 2007;22:1171–6.CrossRefPubMed
23.
go back to reference Hamano T, Nakano C, Obi Y, et al. Fibroblast growth factor 23 and 25-hydroxyvitamin D levels are associated with estimated glomerular filtration rate decline. Kideny Int Supple. 2013;3:469–75.CrossRef Hamano T, Nakano C, Obi Y, et al. Fibroblast growth factor 23 and 25-hydroxyvitamin D levels are associated with estimated glomerular filtration rate decline. Kideny Int Supple. 2013;3:469–75.CrossRef
24.
go back to reference Oliveira RB, Cancela AL, Graciolli FG, et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010;5:286–91.CrossRefPubMedPubMedCentral Oliveira RB, Cancela AL, Graciolli FG, et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010;5:286–91.CrossRefPubMedPubMedCentral
25.
go back to reference Evenepoel P, Meijers B, Viaene L, et al. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5:1268–76.CrossRefPubMedPubMedCentral Evenepoel P, Meijers B, Viaene L, et al. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5:1268–76.CrossRefPubMedPubMedCentral
26.
go back to reference Lumlertgul D, Burke TJ, Gillum DM, et al. Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Int. 1986;29:658–66.CrossRefPubMed Lumlertgul D, Burke TJ, Gillum DM, et al. Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Int. 1986;29:658–66.CrossRefPubMed
27.
go back to reference Lau K. Phosphate excess and progressive renal failure: the precipitation-calcification hypothesis. Kidney Int. 1989;36:918–37.CrossRefPubMed Lau K. Phosphate excess and progressive renal failure: the precipitation-calcification hypothesis. Kidney Int. 1989;36:918–37.CrossRefPubMed
28.
go back to reference Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996;124:627–32.CrossRefPubMed Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996;124:627–32.CrossRefPubMed
29.
go back to reference Kemp GJ, Blumsohn A, Morris BW. Circadian changes in plasma phosphate concentration, urinary phosphate excretion, and cellular phosphate shifts. Clin Chem. 1992;38:400–2.PubMed Kemp GJ, Blumsohn A, Morris BW. Circadian changes in plasma phosphate concentration, urinary phosphate excretion, and cellular phosphate shifts. Clin Chem. 1992;38:400–2.PubMed
Metadata
Title
Urinary phosphorus excretion per creatinine clearance as a prognostic marker for progression of chronic kidney disease: a retrospective cohort study
Authors
Tomoki Kawasaki
Yoshitaka Maeda
Hisazumi Matsuki
Yuko Matsumoto
Masanobu Akazawa
Tamaki Kuyama
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2015
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-015-0118-1

Other articles of this Issue 1/2015

BMC Nephrology 1/2015 Go to the issue