Skip to main content
Top
Published in: BMC Nephrology 1/2015

Open Access 01-12-2015 | Study protocol

Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology in Critically Ill Children (AWARE): study protocol for a prospective observational study

Authors: Rajit K Basu, Ahmad Kaddourah, Tara Terrell, Theresa Mottes, Patricia Arnold, Judd Jacobs, Jennifer Andringa, Stuart L Goldstein, on behalf of the Prospective Pediatric AKI Research Group (ppAKI)

Published in: BMC Nephrology | Issue 1/2015

Login to get access

Abstract

Background

Acute kidney injury (AKI) is associated with poor outcome in critically ill children. While data extracted from retrospective study of pediatric populations demonstrate a high incidence of AKI, the literature lacks focused and comprehensive multicenter studies describing AKI risk factors, epidemiology, and outcome. Additionally, very few pediatric studies have examined novel urinary biomarkers outside of the cardiopulmonary bypass population.

Methods/Design

This is a prospective observational study. We anticipate collecting data on over 5000 critically ill children admitted to 31 pediatric intensive care units (PICUs) across the world during the calendar year of 2014. Data will be collected for seven days on all children older than 90 days and younger than 25 years without baseline stage 5 chronic kidney disease, chronic renal replacement therapy, and outside of 90 days of a kidney transplant or from surgical correction of congenital heart disease. Data to be collected includes demographic information, admission diagnoses and co-morbidities, and details on fluid and vasoactive resuscitation used. The renal angina index will be calculated integrating risk factors and early changes in serum creatinine and fluid overload. On days 2–7, all hemodynamic and pertinent laboratory values will be captured focusing on AKI pertinent values. Daily calculated values will include % fluid overload, fluid corrected creatinine, and KDIGO AKI stage. Urine will be captured twice daily for biomarker analysis on Days 0–3 of admission. Biomarkers to be measured include neutrophil gelatinase lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver-type fatty acid binding protein (l-FABP), and interleukin-18 (IL-18). The primary outcome to be quantified is incidence rate of severe AKI on Day 3 (Day 3 – AKI). Prediction of Day 3 – AKI by the RAI and after incorporation of biomarkers with RAI will be analyzed.

Discussion

The Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology (AWARE) study, creates the first prospective international pediatric all cause AKI data warehouse and biologic sample repository, providing a broad and invaluable resource for critical care nephrologists seeking to study risk factors, prediction, identification, and treatment options for a disease syndrome with high associated morbidity affecting a significant proportion of hospitalized children.

Trial registration

ClinicalTrials.gov: NCT01987921
Appendix
Available only for authorised users
Literature
1.
go back to reference Schneider J, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38:933–9.CrossRefPubMed Schneider J, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38:933–9.CrossRefPubMed
2.
go back to reference Bailey D, Phan V, Litalien C, Ducruet T, Merouani A, Lacroix J, et al. Risk factors of acute renal failure in critically ill children: a prospective descriptive epidemiological study. Pediatr Crit Care Med. 2007;8:29–35.CrossRefPubMed Bailey D, Phan V, Litalien C, Ducruet T, Merouani A, Lacroix J, et al. Risk factors of acute renal failure in critically ill children: a prospective descriptive epidemiological study. Pediatr Crit Care Med. 2007;8:29–35.CrossRefPubMed
3.
go back to reference Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol. 2008;3:948–54.CrossRefPubMedPubMedCentral Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol. 2008;3:948–54.CrossRefPubMedPubMedCentral
4.
go back to reference Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71:1028–35.CrossRefPubMed Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71:1028–35.CrossRefPubMed
5.
go back to reference Basu RK, Zappitelli M, Brunner L, Wang Y, Wong H, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85:659–67.CrossRefPubMed Basu RK, Zappitelli M, Brunner L, Wang Y, Wong H, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85:659–67.CrossRefPubMed
6.
go back to reference Selewski DT, Cornell TT, Heung M, Troost JP, Ehrmann BJ, Blatt NB, et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 2014;40:1481–8.CrossRefPubMed Selewski DT, Cornell TT, Heung M, Troost JP, Ehrmann BJ, Blatt NB, et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 2014;40:1481–8.CrossRefPubMed
7.
go back to reference Liano G, Pascual J, Madrid Acute Renal Failure Study Group. Acute renal failure. Lancet. 1996;347:479. author reply 479.PubMed Liano G, Pascual J, Madrid Acute Renal Failure Study Group. Acute renal failure. Lancet. 1996;347:479. author reply 479.PubMed
8.
9.
go back to reference Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol. 2010;298:F1078–94.CrossRefPubMedPubMedCentral Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol. 2010;298:F1078–94.CrossRefPubMedPubMedCentral
10.
go back to reference Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitors BA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17:1135–42.CrossRefPubMed Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitors BA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17:1135–42.CrossRefPubMed
11.
go back to reference Heringlake M, Knappe M, Vargas Hein O, et al. Renal dysfunction according to the ADQI-RIFLE system and clinical practice patterns after cardiac surgery in Germany. Minerva Anestesiol. 2006;72:645–54.PubMed Heringlake M, Knappe M, Vargas Hein O, et al. Renal dysfunction according to the ADQI-RIFLE system and clinical practice patterns after cardiac surgery in Germany. Minerva Anestesiol. 2006;72:645–54.PubMed
12.
go back to reference Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med. 2006;34:1913–7.CrossRefPubMed Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med. 2006;34:1913–7.CrossRefPubMed
13.
go back to reference Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35:1837–43. quiz 1852.CrossRefPubMed Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35:1837–43. quiz 1852.CrossRefPubMed
14.
go back to reference Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61:649–72.CrossRefPubMed Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61:649–72.CrossRefPubMed
15.
go back to reference Kendirli T, Ekim M, Ozcakar ZB, Yuksel S, Acar B, Ozturk-Hiismi B, et al. Renal replacement therapies in pediatric intensive care patients: experiences of one center in Turkey. Pediatr Int. 2007;49:345–8.CrossRefPubMed Kendirli T, Ekim M, Ozcakar ZB, Yuksel S, Acar B, Ozturk-Hiismi B, et al. Renal replacement therapies in pediatric intensive care patients: experiences of one center in Turkey. Pediatr Int. 2007;49:345–8.CrossRefPubMed
16.
go back to reference Cruz DN, Bagshaw SM, Maisel A, Lewington A, Thadhani R, Chakravarthi R, et al. Use of biomarkers to assess prognosis and guide management of patients with acute kidney injury. Contrib Nephrol. 2013;182:45–64.CrossRefPubMed Cruz DN, Bagshaw SM, Maisel A, Lewington A, Thadhani R, Chakravarthi R, et al. Use of biomarkers to assess prognosis and guide management of patients with acute kidney injury. Contrib Nephrol. 2013;182:45–64.CrossRefPubMed
17.
go back to reference McCullough PA, Bouchard J, Waikar SS, Siew ED, Endre ZH, Goldstein SL, et al. Implementation of Novel Biomarkers in the Diagnosis, Prognosis, and Management of Acute Kidney Injury: Executive Summary from the Tenth Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:5–12.CrossRefPubMed McCullough PA, Bouchard J, Waikar SS, Siew ED, Endre ZH, Goldstein SL, et al. Implementation of Novel Biomarkers in the Diagnosis, Prognosis, and Management of Acute Kidney Injury: Executive Summary from the Tenth Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:5–12.CrossRefPubMed
18.
go back to reference Devarajan P, Mishra J, Supavekin S, Patterson LT, Steven PS. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80:365–76.CrossRefPubMed Devarajan P, Mishra J, Supavekin S, Patterson LT, Steven PS. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80:365–76.CrossRefPubMed
19.
go back to reference Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73:863–9.CrossRefPubMed Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73:863–9.CrossRefPubMed
20.
go back to reference Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.CrossRefPubMed Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.CrossRefPubMed
21.
go back to reference Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199–203.CrossRefPubMed Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199–203.CrossRefPubMed
22.
go back to reference Soto K, Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, et al. Plasma NGAL for the Diagnosis of AKI in Patients Admitted from the Emergency Department Setting. Clin J Am Soc Nephrol. 2013;8:2053–63.CrossRefPubMedPubMedCentral Soto K, Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, et al. Plasma NGAL for the Diagnosis of AKI in Patients Admitted from the Emergency Department Setting. Clin J Am Soc Nephrol. 2013;8:2053–63.CrossRefPubMedPubMedCentral
23.
go back to reference Al-Ismaili Z, Palijan A, Zappitelli M. Biomarkers of acute kidney injury in children: discovery, evaluation, and clinical application. Pediatr Nephrol. 2011;26:29–40.CrossRefPubMed Al-Ismaili Z, Palijan A, Zappitelli M. Biomarkers of acute kidney injury in children: discovery, evaluation, and clinical application. Pediatr Nephrol. 2011;26:29–40.CrossRefPubMed
24.
go back to reference Ahlstrom A, Tallgren M, Peltonen S, Pettila V. Evolution and predictive power of serum cystatin C in acute renal failure. Clin Nephrol. 2004;62:344–50.CrossRefPubMed Ahlstrom A, Tallgren M, Peltonen S, Pettila V. Evolution and predictive power of serum cystatin C in acute renal failure. Clin Nephrol. 2004;62:344–50.CrossRefPubMed
25.
go back to reference Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73:1008–16.CrossRefPubMed Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73:1008–16.CrossRefPubMed
26.
go back to reference Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65.CrossRefPubMed Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65.CrossRefPubMed
27.
go back to reference Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11:R84.CrossRefPubMedPubMedCentral Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11:R84.CrossRefPubMedPubMedCentral
28.
go back to reference Basu RK, Chawla LS, Wheeler DS, Goldstein SL. Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatr Nephrol. 2012;27:1067–78.CrossRefPubMed Basu RK, Chawla LS, Wheeler DS, Goldstein SL. Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatr Nephrol. 2012;27:1067–78.CrossRefPubMed
30.
go back to reference Basu RK, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol. 2014;9:654–62.CrossRefPubMedPubMedCentral Basu RK, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol. 2014;9:654–62.CrossRefPubMedPubMedCentral
31.
go back to reference Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107:1309–12.CrossRefPubMed Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107:1309–12.CrossRefPubMed
32.
go back to reference Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14:e218–24.CrossRefPubMed Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14:e218–24.CrossRefPubMed
33.
go back to reference Group KDIGOKAKIW. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.CrossRef Group KDIGOKAKIW. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.CrossRef
34.
go back to reference Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefPubMed Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefPubMed
Metadata
Title
Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology in Critically Ill Children (AWARE): study protocol for a prospective observational study
Authors
Rajit K Basu
Ahmad Kaddourah
Tara Terrell
Theresa Mottes
Patricia Arnold
Judd Jacobs
Jennifer Andringa
Stuart L Goldstein
on behalf of the Prospective Pediatric AKI Research Group (ppAKI)
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2015
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-015-0016-6

Other articles of this Issue 1/2015

BMC Nephrology 1/2015 Go to the issue