Skip to main content
Top
Published in: BMC Medical Genetics 1/2017

Open Access 01-12-2017 | Research article

Sequence variants identification at the KCNQ1OT1:TSS differentially Methylated region in isolated omphalocele cases

Authors: Maria Francesca Bedeschi, Mariarosaria Calvello, Leda Paganini, Lidia Pezzani, Marco Baccarin, Laura Fontana, Silvia M. Sirchia, Silvana Guerneri, Lorena Canazza, Ernesto Leva, Lorenzo Colombo, Faustina Lalatta, Fabio Mosca, Silvia Tabano, Monica Miozzo

Published in: BMC Medical Genetics | Issue 1/2017

Login to get access

Abstract

Background

Omphalocele is a congenital midline ventral body wall defect that can exist as isolated malformation or as part of a syndrome. It can be considered one of the major and most frequent clinical manifestation of Beckwith-Wiedemann Syndrome (BWS) in case of loss of methylation at KCNQ1OT1: Transcription Star Site-Differentially Methylated Region (TSS-DMR) or in presence of CDKN1C mutations. The isolated form of the omphalocele accounts approximately for about the 14% of the total cases and its molecular etiology has never been fully elucidated.

Methods

Given the tight relationship with BWS, we hypothesized that the isolated form of the omphalocele could belong to the heterogeneous spectrum of the BWS associated features, representing an endophenotype with a clear genetic connection. We therefore investigated genetic and epigenetic changes affecting BWS imprinted locus at 11p15.5 imprinted region, focusing in particular on the KCNQ1OT1:TSS DMR.

Results

We studied 21 cases of isolated omphalocele detected during pregnancy or at birth and identified the following rare maternally inherited variants: i) the non-coding variant G > A at nucleotide 687 (NR_002728.3) at KCNQ1OT1:TSS-DMR, which alters the methylation pattern of the imprinted allele, in one patient; ii) the deletion c.624-629delGGCCCC at exon 1 of CDKN1C, with unknown clinical significance, in two unrelated cases.

Conclusions

Taken together, these findings suggest that KCNQ1OT1:TSS-DMR could be a susceptibility locus for the isolated omphalocele.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sadler TW. The embryologic origin of ventral body wall defects. Semin Pediatr Surg. 2010;19(3):209–14.CrossRefPubMed Sadler TW. The embryologic origin of ventral body wall defects. Semin Pediatr Surg. 2010;19(3):209–14.CrossRefPubMed
2.
go back to reference Cohen-Overbeek TE, Tong WH, Hatzmann TR, Wilms JF, Govaerts LC, Galjaard RJ, et al. Omphalocele: comparison of outcome following prenatal or postnatal diagnosis. Ultrasound Obstet Gynecol. 2010;36(6):687–92.CrossRefPubMed Cohen-Overbeek TE, Tong WH, Hatzmann TR, Wilms JF, Govaerts LC, Galjaard RJ, et al. Omphalocele: comparison of outcome following prenatal or postnatal diagnosis. Ultrasound Obstet Gynecol. 2010;36(6):687–92.CrossRefPubMed
3.
go back to reference Hoyme HE, Higginbottom MC, Jones KL. The vascular pathogenesis of gastroschisis: intrauterine interruption of the omphalomesenteric artery. J Pediatr. 1981;98(2):228–31.CrossRefPubMed Hoyme HE, Higginbottom MC, Jones KL. The vascular pathogenesis of gastroschisis: intrauterine interruption of the omphalomesenteric artery. J Pediatr. 1981;98(2):228–31.CrossRefPubMed
4.
go back to reference Brewer S, Williams T. Loss of AP-2a impacts multiple aspects of ventral body wall development and closure. Dev Biol. 2004;267(2):399–417.CrossRefPubMed Brewer S, Williams T. Loss of AP-2a impacts multiple aspects of ventral body wall development and closure. Dev Biol. 2004;267(2):399–417.CrossRefPubMed
5.
go back to reference Brewer S, Williams T. Finally, a sense of closure? Animal models of human ventral body wall defects. BioEssays. 2004;26(12):1307–21.CrossRefPubMed Brewer S, Williams T. Finally, a sense of closure? Animal models of human ventral body wall defects. BioEssays. 2004;26(12):1307–21.CrossRefPubMed
6.
go back to reference Prefumo F, Izzi C. Fetal abdominal wall defects. Best Pract Res Clin Obstet Gynaecol. 2014;28(3):391–402.CrossRefPubMed Prefumo F, Izzi C. Fetal abdominal wall defects. Best Pract Res Clin Obstet Gynaecol. 2014;28(3):391–402.CrossRefPubMed
7.
go back to reference Chen CP. Syndromes and disorders associated with omphalocele (I): Beckwith-Wiedemann syndrome. Taiwan J Obstet Gynecol. 2007;46(2):96–102.CrossRefPubMed Chen CP. Syndromes and disorders associated with omphalocele (I): Beckwith-Wiedemann syndrome. Taiwan J Obstet Gynecol. 2007;46(2):96–102.CrossRefPubMed
8.
go back to reference Chen CP. Syndromes and disorders associated with omphalocele (II): OEIS complex and Pentalogy of Cantrell. Taiwan J Obstet Gynecol. 2007;46(2):103–10.CrossRefPubMed Chen CP. Syndromes and disorders associated with omphalocele (II): OEIS complex and Pentalogy of Cantrell. Taiwan J Obstet Gynecol. 2007;46(2):103–10.CrossRefPubMed
9.
go back to reference Chen CP. Syndromes and disorders associated with omphalocele (III): single gene disorders, neural tube defects, diaphragmatic defects and others. Taiwan J Obstet Gynecol. 2007;46(2):111–20.CrossRefPubMed Chen CP. Syndromes and disorders associated with omphalocele (III): single gene disorders, neural tube defects, diaphragmatic defects and others. Taiwan J Obstet Gynecol. 2007;46(2):111–20.CrossRefPubMed
10.
go back to reference Frolov P, Alali J, Klein MD. Clinical risk factors for gastroschisis and omphalocele in humans: a review of the literature. Pediatr Surg Int. 2010;26(12):1135–48.CrossRefPubMed Frolov P, Alali J, Klein MD. Clinical risk factors for gastroschisis and omphalocele in humans: a review of the literature. Pediatr Surg Int. 2010;26(12):1135–48.CrossRefPubMed
11.
go back to reference Bliek J, Maas S, Alders M, Merks JH, Mannens M. Epigenotype, phenotype and tumors in patients with isolated hemihyperplasia. J Pediatr. 2008;153(1):95–100.CrossRefPubMed Bliek J, Maas S, Alders M, Merks JH, Mannens M. Epigenotype, phenotype and tumors in patients with isolated hemihyperplasia. J Pediatr. 2008;153(1):95–100.CrossRefPubMed
12.
go back to reference Martin RA, Grange DK, Zehnbauer B, Debaun MR. LIT1 and H19 methylation defects in isolated hemihyperplasia. Am J Med Genet. 2005;134:129–31.CrossRef Martin RA, Grange DK, Zehnbauer B, Debaun MR. LIT1 and H19 methylation defects in isolated hemihyperplasia. Am J Med Genet. 2005;134:129–31.CrossRef
13.
go back to reference Cerrato F, De Crescenzo A, Riccio A. Looking for CDKN1C enhancers. Eur J Hum Genet. 2014;22(4):442–3.CrossRefPubMed Cerrato F, De Crescenzo A, Riccio A. Looking for CDKN1C enhancers. Eur J Hum Genet. 2014;22(4):442–3.CrossRefPubMed
14.
go back to reference Milani D, Pezzani L, Tabano S, Miozzo M. Beckwith-Wiedemann and IMAGe syndromes: two very different diseases caused by mutations on the same gene. Appl Clin Genet. 2014;7:169–75.PubMedPubMedCentral Milani D, Pezzani L, Tabano S, Miozzo M. Beckwith-Wiedemann and IMAGe syndromes: two very different diseases caused by mutations on the same gene. Appl Clin Genet. 2014;7:169–75.PubMedPubMedCentral
15.
go back to reference Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, et al. CDKN1C mutations: two sides of the same coin. Trend Mol Med. 2014;20(11):614–22.CrossRef Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, et al. CDKN1C mutations: two sides of the same coin. Trend Mol Med. 2014;20(11):614–22.CrossRef
16.
go back to reference Romanelli V, Belinchón A, Benito-Sanz S, Martínez-Glez V, Gracia-Bouthelier R, Heath KE, et al. CDKN1C (p57(Kip2)) analysis in Beckwith-Wiedemann syndrome (BWS) patients: genotype-phenotype correlations, novel mutations, and polymorphisms. Am J Med Genet. 2010;152A:1390–7.PubMed Romanelli V, Belinchón A, Benito-Sanz S, Martínez-Glez V, Gracia-Bouthelier R, Heath KE, et al. CDKN1C (p57(Kip2)) analysis in Beckwith-Wiedemann syndrome (BWS) patients: genotype-phenotype correlations, novel mutations, and polymorphisms. Am J Med Genet. 2010;152A:1390–7.PubMed
17.
go back to reference Russo S, Calzari L, Mussa A, Mainini E, Cassina M, Di Candia S, et al. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann sindromes. Clinical. Epigenetics. 2016;8:23.CrossRef Russo S, Calzari L, Mussa A, Mainini E, Cassina M, Di Candia S, et al. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann sindromes. Clinical. Epigenetics. 2016;8:23.CrossRef
18.
go back to reference Mussa A, Russo S, Larizza L, Riccio A, Ferrero GB, et al. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2016;24:183–90.CrossRefPubMed Mussa A, Russo S, Larizza L, Riccio A, Ferrero GB, et al. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2016;24:183–90.CrossRefPubMed
19.
go back to reference Li M, Squire J, Shuman C, Fei YL. Imprinting status of 11p15 genes in Beckwith Wiedemann syndrome patients with CDKN1C mutations. Genomics. 2001;74:3. Li M, Squire J, Shuman C, Fei YL. Imprinting status of 11p15 genes in Beckwith Wiedemann syndrome patients with CDKN1C mutations. Genomics. 2001;74:3.
20.
go back to reference Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al. Molecular subtypes and phenotypic expression of Beckwith Wiedemann syndrome syndrome. Eur J Hum Genet. 2005;13:10.CrossRef Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al. Molecular subtypes and phenotypic expression of Beckwith Wiedemann syndrome syndrome. Eur J Hum Genet. 2005;13:10.CrossRef
21.
go back to reference Grati FR, Turolla L, D'Ajello P, Ruggeri A, Miozzo M, Bracalente G, et al. Chromosome 11 segmental paternal isodisomy in amniocytes from two fetuses with omphalocoele: new highlights on phenotype-genotype correlations in Beckwith-Wiedemann syndrome. J Med Genet. 2007;44(4):257–63.CrossRefPubMedPubMedCentral Grati FR, Turolla L, D'Ajello P, Ruggeri A, Miozzo M, Bracalente G, et al. Chromosome 11 segmental paternal isodisomy in amniocytes from two fetuses with omphalocoele: new highlights on phenotype-genotype correlations in Beckwith-Wiedemann syndrome. J Med Genet. 2007;44(4):257–63.CrossRefPubMedPubMedCentral
22.
go back to reference Radhakrishna U, Nath SK, McElreavey K, Ratnamala U, Sun C, Maiti AK, et al. Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele. J Med Genet. 2012;49(4):270–6.CrossRefPubMedPubMedCentral Radhakrishna U, Nath SK, McElreavey K, Ratnamala U, Sun C, Maiti AK, et al. Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele. J Med Genet. 2012;49(4):270–6.CrossRefPubMedPubMedCentral
23.
go back to reference Kanagawa SL, Begleiter ML, Ostlie DJ, Holcomb G, Drake W, Butler MG. Omphalocele in three generations with autosomal dominant transmission. J Med Genet. 2002;39:184–5.CrossRefPubMedPubMedCentral Kanagawa SL, Begleiter ML, Ostlie DJ, Holcomb G, Drake W, Butler MG. Omphalocele in three generations with autosomal dominant transmission. J Med Genet. 2002;39:184–5.CrossRefPubMedPubMedCentral
24.
go back to reference Feldkamp ML, Srisukhumbowornchai S, Romitti PA, Olney RS, Richardson SD, Botto LD. Self-reported maternal cigarette smoke exposure during the periconceptional period and the risk for omphalocoele. Paediatr Perinat Epidemiol. 2014;28(1):67–73.CrossRefPubMed Feldkamp ML, Srisukhumbowornchai S, Romitti PA, Olney RS, Richardson SD, Botto LD. Self-reported maternal cigarette smoke exposure during the periconceptional period and the risk for omphalocoele. Paediatr Perinat Epidemiol. 2014;28(1):67–73.CrossRefPubMed
25.
go back to reference Pryde PG, Greb A, Isada NB, Johnson MB, Klein M, Evans MI. Familial omphalocele: considerations in genetic counseling. Am J Med Genet. 1992;44:624–7.CrossRefPubMed Pryde PG, Greb A, Isada NB, Johnson MB, Klein M, Evans MI. Familial omphalocele: considerations in genetic counseling. Am J Med Genet. 1992;44:624–7.CrossRefPubMed
26.
go back to reference Van Eijck FC, Hoogeveen YL, van Weel C, Rieu PN, Wijnen RM. Minor and giant omphalocele: long-term outcomes and quality of life. J Pediatr Surg. 2009;44(7):1355–9.CrossRefPubMed Van Eijck FC, Hoogeveen YL, van Weel C, Rieu PN, Wijnen RM. Minor and giant omphalocele: long-term outcomes and quality of life. J Pediatr Surg. 2009;44(7):1355–9.CrossRefPubMed
27.
go back to reference Garne E. Atrial and ventricular septal defects - epidemiology and spontaneous closure. J Matern Fetal Neonatal Med. 2006;19(5):271–6.CrossRefPubMed Garne E. Atrial and ventricular septal defects - epidemiology and spontaneous closure. J Matern Fetal Neonatal Med. 2006;19(5):271–6.CrossRefPubMed
28.
go back to reference Tabano S, Colapietro P, Cetin I, Grati FR, Zanutto S, Mandò C, et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics. 2010;5(4):313–24.CrossRefPubMed Tabano S, Colapietro P, Cetin I, Grati FR, Zanutto S, Mandò C, et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics. 2010;5(4):313–24.CrossRefPubMed
29.
go back to reference Calvello M, Tabano S, Colapietro P, Maitz S, Pansa A, Augello C, et al. Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. Epigenetics. 2013;8(10):1053–60.CrossRefPubMedPubMedCentral Calvello M, Tabano S, Colapietro P, Maitz S, Pansa A, Augello C, et al. Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. Epigenetics. 2013;8(10):1053–60.CrossRefPubMedPubMedCentral
30.
go back to reference Paganini L, Carlessi N, Fontana L, Silipigni R, Motta S, Fiori S, et al. Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi. Epigenetics. 2015;10(7):643–9.CrossRefPubMedPubMedCentral Paganini L, Carlessi N, Fontana L, Silipigni R, Motta S, Fiori S, et al. Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi. Epigenetics. 2015;10(7):643–9.CrossRefPubMedPubMedCentral
31.
go back to reference Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet. 2012;44(7):788–92.CrossRefPubMedPubMedCentral Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet. 2012;44(7):788–92.CrossRefPubMedPubMedCentral
Metadata
Title
Sequence variants identification at the KCNQ1OT1:TSS differentially Methylated region in isolated omphalocele cases
Authors
Maria Francesca Bedeschi
Mariarosaria Calvello
Leda Paganini
Lidia Pezzani
Marco Baccarin
Laura Fontana
Silvia M. Sirchia
Silvana Guerneri
Lorena Canazza
Ernesto Leva
Lorenzo Colombo
Faustina Lalatta
Fabio Mosca
Silvia Tabano
Monica Miozzo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2017
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-017-0470-z

Other articles of this Issue 1/2017

BMC Medical Genetics 1/2017 Go to the issue