Skip to main content
Top
Published in: BMC Medical Genetics 1/2017

Open Access 01-12-2017 | Research article

The gene–treatment interaction of paraoxonase-1 gene polymorphism and statin therapy on insulin secretion in Japanese patients with type 2 diabetes: Fukuoka diabetes registry

Authors: Akiko Sumi, Udai Nakamura, Masanori Iwase, Hiroki Fujii, Toshiaki Ohkuma, Hitoshi Ide, Tamaki Jodai-Kitamura, Yuji Komorita, Masahito Yoshinari, Yoichiro Hirakawa, Atsushi Hirano, Michiaki Kubo, Takanari Kitazono

Published in: BMC Medical Genetics | Issue 1/2017

Login to get access

Abstract

Background

Although statins deteriorate glucose metabolism, their glucose-lowering effects have emerged in some situations. Here, we assessed whether these effects are a consequence of statins’ interaction with paraoxonase (PON)1 enzyme polymorphism.

Methods

Adult Japanese type 2 diabetes patients (n = 3798) were enrolled in a cross-sectional study. We used Q192R polymorphism of the PON1 gene as a representative single-nucleotide polymorphism and focused on the effects of the wild-type Q allele, in an additive manner. For patients with and without statin therapy, the associations of this allele with fasting plasma glucose (FPG), HbA1c, C-peptide, HOMA2-%β, and HOMA2-IR were investigated separately using a linear regression model, and were compared between groups by testing interactions. Sensitivity analyses were performed using propensity score to further control the imbalance of characteristics between groups.

Results

Among patients with statin therapy, there were linear associations of the number of Q alleles with decreased FPG and HbA1c, and with increased serum C peptide and HOMA2-%β (all P < 0.01 for trends), while such associations were not observed among those without statin therapy. These differences were statistically significant only for serum C peptide and HOMA2-%β (P < 0.01 for interactions). These associations remained significant after multiple explanatory variable adjustment. Sensitivity analyses using propensity score showed broad consistency of these associations.

Conclusions

Patients with the Q allele of the PON1 Q192R polymorphism who were treated with statins exhibited improvement in glucose metabolism, especially in insulin secretion, suggesting the importance of genotyping PON1 Q192R to identify those who could benefit from statin therapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Vallejo-Vaz AJ, Kondapally Seshasai SR, Kurogi K, Michishita I, Nozue T, Sugiyama S, Tsimikas S, Yoshida H, Ray KK. Effect of pitavastatin on glucose, HbA1c and incident diabetes: a meta-analysis of randomized controlled clinical trials in individuals without diabetes. Atherosclerosis. 2015;241:409–18.CrossRefPubMed Vallejo-Vaz AJ, Kondapally Seshasai SR, Kurogi K, Michishita I, Nozue T, Sugiyama S, Tsimikas S, Yoshida H, Ray KK. Effect of pitavastatin on glucose, HbA1c and incident diabetes: a meta-analysis of randomized controlled clinical trials in individuals without diabetes. Atherosclerosis. 2015;241:409–18.CrossRefPubMed
3.
go back to reference Cederberg H, Stančáková A, Yaluri N. Increased risk of diabetes with statin therapy is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetologia. 2015;58:1109–17.CrossRefPubMed Cederberg H, Stančáková A, Yaluri N. Increased risk of diabetes with statin therapy is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetologia. 2015;58:1109–17.CrossRefPubMed
4.
go back to reference Ishikawa M, Namiki A, Kubota T, Yajima S, Fukazawa M, Moroi M, Sugi K. Effect of pravastatin and atorvastatin on glucose metabolism in nondiabetic patients with hypercholesterolemia. Intern Med. 2006;45:51–5.CrossRefPubMed Ishikawa M, Namiki A, Kubota T, Yajima S, Fukazawa M, Moroi M, Sugi K. Effect of pravastatin and atorvastatin on glucose metabolism in nondiabetic patients with hypercholesterolemia. Intern Med. 2006;45:51–5.CrossRefPubMed
5.
go back to reference Koh KK, Quon MJ, Han SH, Lee Y, Kim SJ, Shin EK. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J Am Coll Cardiol. 2010;55:1209–16.CrossRefPubMedPubMedCentral Koh KK, Quon MJ, Han SH, Lee Y, Kim SJ, Shin EK. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J Am Coll Cardiol. 2010;55:1209–16.CrossRefPubMedPubMedCentral
6.
go back to reference Koren-Gluzer M, Aviram M, Meilin E, Hayek T. The antioxidant HDL-associated paraoxonase-1 (PON1) attenuates diabetes development and stimulates β-cell insulin release. Atherosclerosis. 2011;219:510–8.CrossRefPubMed Koren-Gluzer M, Aviram M, Meilin E, Hayek T. The antioxidant HDL-associated paraoxonase-1 (PON1) attenuates diabetes development and stimulates β-cell insulin release. Atherosclerosis. 2011;219:510–8.CrossRefPubMed
7.
go back to reference Franks PW, Pearson E, Florez JC. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care. 2013;36:1413–21.CrossRefPubMedPubMedCentral Franks PW, Pearson E, Florez JC. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care. 2013;36:1413–21.CrossRefPubMedPubMedCentral
8.
go back to reference Swerdlow DI, Preiss D, Kuchenbaecker KB, HMG-coenzyme A. Reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385:351–61.CrossRefPubMedPubMedCentral Swerdlow DI, Preiss D, Kuchenbaecker KB, HMG-coenzyme A. Reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385:351–61.CrossRefPubMedPubMedCentral
9.
go back to reference Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res. 2015;60:50–73.CrossRefPubMed Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res. 2015;60:50–73.CrossRefPubMed
10.
go back to reference Mackness M, Mackness B. Human paraoxonase-1 (PON1): gene structure and expression, promiscuous activities and multiple physiological roles. Gene. 2015;567:12–21.CrossRefPubMedPubMedCentral Mackness M, Mackness B. Human paraoxonase-1 (PON1): gene structure and expression, promiscuous activities and multiple physiological roles. Gene. 2015;567:12–21.CrossRefPubMedPubMedCentral
11.
go back to reference Kakuda H, Matoba M, Nakatoh H, Nagao S, Takekoshi N. Effects of change in high-density lipoprotein cholesterol by statin switching on glucose metabolism and renal function in hypercholesterolemia. J Clin Lipidol. 2015;9:709–15.CrossRefPubMed Kakuda H, Matoba M, Nakatoh H, Nagao S, Takekoshi N. Effects of change in high-density lipoprotein cholesterol by statin switching on glucose metabolism and renal function in hypercholesterolemia. J Clin Lipidol. 2015;9:709–15.CrossRefPubMed
12.
go back to reference de Souza JA, Menin A, Lima LO, Smiderle L, Hutz MH, Van Der Sand CR, Van Der Sand LC, Ferreira ME, Pires RC, Almeida S, Fiegenbaum M. PON1 polymorphisms are predictors of ability to attain HDL-C goals in statin-treated patients. Clin Biochem. 2015;48:1039–44.CrossRefPubMed de Souza JA, Menin A, Lima LO, Smiderle L, Hutz MH, Van Der Sand CR, Van Der Sand LC, Ferreira ME, Pires RC, Almeida S, Fiegenbaum M. PON1 polymorphisms are predictors of ability to attain HDL-C goals in statin-treated patients. Clin Biochem. 2015;48:1039–44.CrossRefPubMed
13.
go back to reference Ohkuma T, Fujii H, Iwase M. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: the Fukuoka diabetes registry and the Hisayama study. Diabetologia. 2013;56:70–7.CrossRefPubMed Ohkuma T, Fujii H, Iwase M. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: the Fukuoka diabetes registry and the Hisayama study. Diabetologia. 2013;56:70–7.CrossRefPubMed
14.
go back to reference Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;12:1487–95.CrossRef Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;12:1487–95.CrossRef
15.
go back to reference Ainsworth BE, Haskell WL, Whitt MC. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.CrossRefPubMed Ainsworth BE, Haskell WL, Whitt MC. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.CrossRefPubMed
16.
go back to reference Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura YA. High-throughput SNP typing system for genome-wide association studies. J Hum Genet. 2001;46:471–7.CrossRefPubMed Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura YA. High-throughput SNP typing system for genome-wide association studies. J Hum Genet. 2001;46:471–7.CrossRefPubMed
18.
go back to reference Deakin SP, James RW. Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clin Sci. 2004;107:435–47.CrossRefPubMed Deakin SP, James RW. Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clin Sci. 2004;107:435–47.CrossRefPubMed
19.
go back to reference Belwalker GJ, Jagtap PE, Nagane NS, Dhonde S. PON1 activity in newly detected type 2 diabetes mellitus patients with and without hypertension. Int J Pharm Bio Sci. 2013;4:1298–302. Belwalker GJ, Jagtap PE, Nagane NS, Dhonde S. PON1 activity in newly detected type 2 diabetes mellitus patients with and without hypertension. Int J Pharm Bio Sci. 2013;4:1298–302.
20.
go back to reference Aviram M, Rosenblat M, Billecke S, Erogul J, Sorenson R, Bisgaier CL, Newton RS, La DB. Human serum paraoxonase (PON1) is inactivated by oxidised low density lipoprotein and preserved by antioxidants. Free Rad Biol Med. 1999;26:892–904.CrossRefPubMed Aviram M, Rosenblat M, Billecke S, Erogul J, Sorenson R, Bisgaier CL, Newton RS, La DB. Human serum paraoxonase (PON1) is inactivated by oxidised low density lipoprotein and preserved by antioxidants. Free Rad Biol Med. 1999;26:892–904.CrossRefPubMed
21.
go back to reference Sentí M, Tomás M, Vila J, Marrugat J, Elosua R, Sala J, Masiá R. Relationship of age-related myocardial infarction risk and Gln/Arg 192 variants of the human paraoxonase1 gene: the REGICOR study. Atherosclerosis. 2001;156:443–9.CrossRefPubMed Sentí M, Tomás M, Vila J, Marrugat J, Elosua R, Sala J, Masiá R. Relationship of age-related myocardial infarction risk and Gln/Arg 192 variants of the human paraoxonase1 gene: the REGICOR study. Atherosclerosis. 2001;156:443–9.CrossRefPubMed
Metadata
Title
The gene–treatment interaction of paraoxonase-1 gene polymorphism and statin therapy on insulin secretion in Japanese patients with type 2 diabetes: Fukuoka diabetes registry
Authors
Akiko Sumi
Udai Nakamura
Masanori Iwase
Hiroki Fujii
Toshiaki Ohkuma
Hitoshi Ide
Tamaki Jodai-Kitamura
Yuji Komorita
Masahito Yoshinari
Yoichiro Hirakawa
Atsushi Hirano
Michiaki Kubo
Takanari Kitazono
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2017
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-017-0509-1

Other articles of this Issue 1/2017

BMC Medical Genetics 1/2017 Go to the issue