Skip to main content
Top
Published in: BMC Medical Genetics 1/2017

Open Access 01-12-2017 | Research article

TRPM4 non-selective cation channel variants in long QT syndrome

Authors: Thomas Hof, Hui Liu, Laurent Sallé, Jean-Jacques Schott, Corinne Ducreux, Gilles Millat, Philippe Chevalier, Vincent Probst, Romain Guinamard, Patrice Bouvagnet

Published in: BMC Medical Genetics | Issue 1/2017

Login to get access

Abstract

Background

Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterized by prolongation of the QT interval, a risk of syncope, and sudden death. There are already a number of causal genes in LQTS, but not all LQTS patients have an identified mutation, which suggests LQTS unknown genes.

Methods

A cohort of 178 LQTS patients, with no mutations in the 3 major LQTS genes (KCNQ1, KCNH2, and SCN5A), was screened for mutations in the transient potential melastatin 4 gene (TRPM4).

Results

Four TRPM4 variants (2.2% of the cohort) were found to change highly conserved amino-acids and were either very rare or absent from control populations. Therefore, these four TRPM4 variants were predicted to be disease causing. Furthermore, no mutations were found in the DNA of these TRPM4 variant carriers in any of the 13 major long QT syndrome genes. Two of these variants were further studied by electrophysiology (p.Val441Met and p.Arg499Pro). Both variants showed a classical TRPM4 outward rectifying current, but the current was reduced by 61 and 90% respectively, compared to wild type TRPM4 current.

Conclusions

This study supports the view that TRPM4 could account for a small percentage of LQTS patients. TRPM4 contribution to the QT interval might be multifactorial by modulating whole cell current but also, as shown in Trpm4−/− mice, by modulating cardiomyocyte proliferation. TRPM4 enlarges the subgroup of LQT genes (KCNJ2 in Andersen syndrome and CACNA1C in Timothy syndrome) known to increase the QT interval through a more complex pleiotropic effect than merely action potential alteration.
Literature
1.
go back to reference Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120:1761–7.CrossRefPubMedPubMedCentral Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120:1761–7.CrossRefPubMedPubMedCentral
2.
go back to reference Zumhagen S, Stallmeyer B, Friedrich C, Eckardt L, Seebohm G, Schulze-Bahr E. Inherited long QT syndrome: clinical manifestation, genetic diagnostics, and therapy. Herzschrittmacherther Elektrophysiol. 2012;23:211–9.CrossRefPubMed Zumhagen S, Stallmeyer B, Friedrich C, Eckardt L, Seebohm G, Schulze-Bahr E. Inherited long QT syndrome: clinical manifestation, genetic diagnostics, and therapy. Herzschrittmacherther Elektrophysiol. 2012;23:211–9.CrossRefPubMed
5.
go back to reference Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39.CrossRefPubMed Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39.CrossRefPubMed
6.
go back to reference Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2 + −activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407.CrossRefPubMed Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2 + −activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407.CrossRefPubMed
7.
go back to reference Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, et al. Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol. 2004;558:75–83.CrossRefPubMedPubMedCentral Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, et al. Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol. 2004;558:75–83.CrossRefPubMedPubMedCentral
8.
go back to reference Demion M, Thireau J, Gueffier M, Finan A, Khoueiry Z, Cassan C, et al. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One. 2014;9:e115256.CrossRefPubMedPubMedCentral Demion M, Thireau J, Gueffier M, Finan A, Khoueiry Z, Cassan C, et al. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One. 2014;9:e115256.CrossRefPubMedPubMedCentral
9.
go back to reference Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest. 2009;119:2737–44.CrossRefPubMedPubMedCentral Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest. 2009;119:2737–44.CrossRefPubMedPubMedCentral
10.
go back to reference Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;3:374–85.CrossRefPubMed Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;3:374–85.CrossRefPubMed
11.
go back to reference Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS One. 2013;8:e54131.CrossRefPubMedPubMedCentral Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS One. 2013;8:e54131.CrossRefPubMedPubMedCentral
12.
go back to reference Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T. Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel. J Cardiovasc Electrophysiol. 2010;21:107–15.CrossRefPubMed Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T. Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel. J Cardiovasc Electrophysiol. 2010;21:107–15.CrossRefPubMed
13.
go back to reference World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4.CrossRef World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4.CrossRef
14.
go back to reference Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124:2181–4.CrossRefPubMed Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124:2181–4.CrossRefPubMed
15.
go back to reference Barc J, Briec F, Schmitt S, Kyndt F, Le Cunff M, Baron E, et al. Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance. J Am Coll Cardiol. 2011;57:40–7.CrossRefPubMed Barc J, Briec F, Schmitt S, Kyndt F, Le Cunff M, Baron E, et al. Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance. J Am Coll Cardiol. 2011;57:40–7.CrossRefPubMed
16.
go back to reference Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, et al. 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol. 2008;153:1697–705.CrossRefPubMedPubMedCentral Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, et al. 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol. 2008;153:1697–705.CrossRefPubMedPubMedCentral
17.
go back to reference Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat. 2009;30:1237–44.CrossRefPubMed Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat. 2009;30:1237–44.CrossRefPubMed
18.
go back to reference Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics Oxf Engl. 2006;22:2729–34.CrossRef Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics Oxf Engl. 2006;22:2729–34.CrossRef
20.
go back to reference Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10:e1003440.CrossRefPubMedPubMedCentral Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10:e1003440.CrossRefPubMedPubMedCentral
21.
go back to reference Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hébert J-L, Ferrer X, et al. Mutational spectrum in the Ca(2+)--activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat. 2012;33:109–17.CrossRefPubMed Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hébert J-L, Ferrer X, et al. Mutational spectrum in the Ca(2+)--activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat. 2012;33:109–17.CrossRefPubMed
22.
go back to reference Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci U S A. 2007;104:20990–5.CrossRefPubMedPubMedCentral Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci U S A. 2007;104:20990–5.CrossRefPubMedPubMedCentral
23.
go back to reference de Villiers CP, van der Merwe L, Crotti L, Goosen A, George AL, Schwartz PJ, et al. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ Cardiovasc Genet. 2014;7:599–606.CrossRefPubMedPubMedCentral de Villiers CP, van der Merwe L, Crotti L, Goosen A, George AL, Schwartz PJ, et al. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ Cardiovasc Genet. 2014;7:599–606.CrossRefPubMedPubMedCentral
24.
go back to reference Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127:1009–17.CrossRefPubMed Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127:1009–17.CrossRefPubMed
25.
go back to reference Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann B-M, Roh MS, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014;7:466–74.CrossRefPubMedPubMedCentral Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann B-M, Roh MS, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014;7:466–74.CrossRefPubMedPubMedCentral
26.
go back to reference Simard C, Hof T, Keddache Z, Launay P, Guinamard R. The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol. 2013;59:11–9.CrossRefPubMed Simard C, Hof T, Keddache Z, Launay P, Guinamard R. The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol. 2013;59:11–9.CrossRefPubMed
27.
go back to reference Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londoño JE, Uhl S, et al. Increased β-adrenergic inotropy in ventricular myocardium from Trpm4−/− mice. Circ Res. 2014;114:283–94.CrossRefPubMed Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londoño JE, Uhl S, et al. Increased β-adrenergic inotropy in ventricular myocardium from Trpm4−/− mice. Circ Res. 2014;114:283–94.CrossRefPubMed
28.
go back to reference Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George AL, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71:663–8.CrossRefPubMedPubMedCentral Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George AL, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71:663–8.CrossRefPubMedPubMedCentral
29.
go back to reference Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.CrossRefPubMed Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.CrossRefPubMed
Metadata
Title
TRPM4 non-selective cation channel variants in long QT syndrome
Authors
Thomas Hof
Hui Liu
Laurent Sallé
Jean-Jacques Schott
Corinne Ducreux
Gilles Millat
Philippe Chevalier
Vincent Probst
Romain Guinamard
Patrice Bouvagnet
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2017
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-017-0397-4

Other articles of this Issue 1/2017

BMC Medical Genetics 1/2017 Go to the issue