Skip to main content
Top
Published in: BMC Medical Genetics 1/2017

Open Access 01-12-2017 | Case report

Severe child form of primary hyperoxaluria type 2 - a case report revealing consequence of GRHPR deficiency on metabolism

Authors: Jana Konkoľová, Ján Chandoga, Juraj Kováčik, Marcel Repiský, Veronika Kramarová, Ivana Paučinová, Daniel Böhmer

Published in: BMC Medical Genetics | Issue 1/2017

Login to get access

Abstract

Background

Primary hyperoxaluria type 2 is a rare monogenic disorder inherited in an autosomal recessive pattern. It results from the absence of the enzyme glyoxylate reductase/hydroxypyruvate reductase (GRHPR). As a consequence of deficient enzyme activity, excessive amounts of oxalate and L-glycerate are excreted in the urine, and are a source for the formation of calcium oxalate stones that result in recurrent nephrolithiasis and less frequently nephrocalcinosis.

Case presentation

We report a case of a 10-month-old patient diagnosed with urolithiasis. Screening of inborn errors of metabolism, including the performance of GC/MS urine organic acid profiling and HPLC amino acid profiling, showed abnormalities, which suggested deficiency of GRHPR enzyme. Additional metabolic disturbances observed in the patient led us to seek other genetic determinants and the elucidation of these findings. Besides the elevated excretion of 3-OH-butyrate, adipic acid, which are typical marks of ketosis, other metabolites such as 3-aminoisobutyric acid, 3-hydroxyisobutyric acid, 3-hydroxypropionic acid and 2-ethyl-3-hydroxypropionic acids were observed in increased amounts in the urine. Direct sequencing of the GRHPR gene revealed novel mutation, described for the first time in this article c.454dup (p.Thr152Asnfs*39) in homozygous form. The frequent nucleotide variants were found in AGXT2 gene.

Conclusions

The study presents metabolomic and molecular-genetic findings in a patient with PH2. Mutation analysis broadens the allelic spectrum of the GRHPR gene to include a novel c.454dup mutation that causes the truncation of the GRHPR protein and loss of its two functional domains. We also evaluated whether nucleotide variants in the AGXT2 gene could influence the biochemical profile in PH2 and the overproduction of metabolites, especially in ketosis. We suppose that some metabolomic changes might be explained by the inhibition of the MMSADH enzyme by metabolites that increase as a consequence of GRHPR and AGXT2 enzyme deficiency. Several facts support an assumption that catabolic conditions in our patient could worsen the degree of hyperoxaluria and glyceric aciduria as a consequence of the elevated production of free amino acids and their intermediary products.
Literature
1.
go back to reference Danpure CJ, Jennings PR, Watts RW. Enzymological Diagnosis of Primary Hyperoxaluria Type 1 by Measurement of Hepatic Alanine: Glyoxylate Aminotransferase Activity. Lancet. 1987;1(8528):289–91.CrossRefPubMed Danpure CJ, Jennings PR, Watts RW. Enzymological Diagnosis of Primary Hyperoxaluria Type 1 by Measurement of Hepatic Alanine: Glyoxylate Aminotransferase Activity. Lancet. 1987;1(8528):289–91.CrossRefPubMed
2.
go back to reference Rumsby G, Cregeeny DP. Identification and Expression of a Cdna for Human Hydroxypyruvate/Glyoxylate Reductase. Biochim Biophys Acta. 1999;1446(3):383–8.CrossRefPubMed Rumsby G, Cregeeny DP. Identification and Expression of a Cdna for Human Hydroxypyruvate/Glyoxylate Reductase. Biochim Biophys Acta. 1999;1446(3):383–8.CrossRefPubMed
3.
go back to reference Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The Gene Encoding Hydroxypyruvate Reductase (Grhpr) Is Mutated in Patients with Primary Hyperoxaluria Type Ii. Hum Mol Genet. 1999;8(11):2063–9.CrossRefPubMed Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The Gene Encoding Hydroxypyruvate Reductase (Grhpr) Is Mutated in Patients with Primary Hyperoxaluria Type Ii. Hum Mol Genet. 1999;8(11):2063–9.CrossRefPubMed
4.
go back to reference Ben-Shalom E, Frishberg Y. Primary hyperoxalurias: diagnosis and treatment. Pediatr Nephrol. 2015;30(10):1781–91. Ben-Shalom E, Frishberg Y. Primary hyperoxalurias: diagnosis and treatment. Pediatr Nephrol. 2015;30(10):1781–91.
5.
go back to reference Danpure CJ. Primary hyperoxaluria. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Vogelstein B, editors. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, NY; 2001. p. 3323–67. Danpure CJ. Primary hyperoxaluria. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Vogelstein B, editors. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, NY; 2001. p. 3323–67.
6.
go back to reference Mdluli K, Booth MP, Brady RL, Rumsby G. A Preliminary Account of the Properties of Recombinant Human Glyoxylate Reductase (Grhpr), Ldha and Ldhb with Glyoxylate, and Their Potential Roles in Its Metabolism. Biochim Biophys Acta. 2005;2:209–16.CrossRef Mdluli K, Booth MP, Brady RL, Rumsby G. A Preliminary Account of the Properties of Recombinant Human Glyoxylate Reductase (Grhpr), Ldha and Ldhb with Glyoxylate, and Their Potential Roles in Its Metabolism. Biochim Biophys Acta. 2005;2:209–16.CrossRef
8.
go back to reference Belostotsky R, Pitt JJ, Frishberg Y. Primary Hyperoxaluria Type Iii--a Model for Studying Perturbations in Glyoxylate Metabolism. J Mol Med. 2012;90(12):1497–504.CrossRefPubMed Belostotsky R, Pitt JJ, Frishberg Y. Primary Hyperoxaluria Type Iii--a Model for Studying Perturbations in Glyoxylate Metabolism. J Mol Med. 2012;90(12):1497–504.CrossRefPubMed
9.
go back to reference Beck BB, Baasner A, Buescher A, Habbig S, Reintjes N, Kemper MJ, Sikora P, Mache C, Pohl M, Stahl M, Toenshoff B, Pape L, Fehrenbach H, Jacob DE, Grohe B, Wolf MT, Nurnberg G, Yigit G, Salido EC, Hoppe B. Novel Findings in Patients with Primary Hyperoxaluria Type Iii and Implications for Advanced Molecular Testing Strategies. Eur J Hum Genet. 2013;21(2):162–72.CrossRefPubMed Beck BB, Baasner A, Buescher A, Habbig S, Reintjes N, Kemper MJ, Sikora P, Mache C, Pohl M, Stahl M, Toenshoff B, Pape L, Fehrenbach H, Jacob DE, Grohe B, Wolf MT, Nurnberg G, Yigit G, Salido EC, Hoppe B. Novel Findings in Patients with Primary Hyperoxaluria Type Iii and Implications for Advanced Molecular Testing Strategies. Eur J Hum Genet. 2013;21(2):162–72.CrossRefPubMed
10.
go back to reference Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther W. T (2012) 4-Hydroxy-2-Oxoglutarate Aldolase Inactivity in Primary Hyperoxaluria Type 3 and Glyoxylate Reductase Inhibition. Biochim Biophys Acta. 1822;10:1544–52. Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther W. T (2012) 4-Hydroxy-2-Oxoglutarate Aldolase Inactivity in Primary Hyperoxaluria Type 3 and Glyoxylate Reductase Inhibition. Biochim Biophys Acta. 1822;10:1544–52.
11.
go back to reference Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular Analysis of the Glyoxylate Reductase (Grhpr) Gene and Description of Mutations Underlying Primary Hyperoxaluria Type 2. Hum Mutat. 2003;22(6):497.CrossRefPubMed Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular Analysis of the Glyoxylate Reductase (Grhpr) Gene and Description of Mutations Underlying Primary Hyperoxaluria Type 2. Hum Mutat. 2003;22(6):497.CrossRefPubMed
12.
go back to reference Williams HE, Smith LH. L-Glyceric Aciduria, A New Genetic Variant of Primary Hyperoxaluria. N Engl J Med. 1968;278(5):233–8.CrossRefPubMed Williams HE, Smith LH. L-Glyceric Aciduria, A New Genetic Variant of Primary Hyperoxaluria. N Engl J Med. 1968;278(5):233–8.CrossRefPubMed
13.
go back to reference Chlebeck PT, Milliner DS, Smith LH. Long-Term Prognosis in Primary Hyperoxaluria Type Ii (L-Glyceric Aciduria). Am J Kidney Dis. 1994;23(2):255–9.CrossRefPubMed Chlebeck PT, Milliner DS, Smith LH. Long-Term Prognosis in Primary Hyperoxaluria Type Ii (L-Glyceric Aciduria). Am J Kidney Dis. 1994;23(2):255–9.CrossRefPubMed
14.
go back to reference Van Schaftingen E, Draye JP, Van Hoof F. Coenzyme Specificity of Mammalian Liver D-Glycerate Dehydrogenase. Eur J Biochem. 1989;186(1–2):355–9.CrossRefPubMed Van Schaftingen E, Draye JP, Van Hoof F. Coenzyme Specificity of Mammalian Liver D-Glycerate Dehydrogenase. Eur J Biochem. 1989;186(1–2):355–9.CrossRefPubMed
15.
go back to reference van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg F. A Primary Hyperoxaluria Type 1 in the Netherlands: Prevalence and Outcome. Nephrol Dial Transplant. 2003;18(2):273–9.CrossRefPubMed van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg F. A Primary Hyperoxaluria Type 1 in the Netherlands: Prevalence and Outcome. Nephrol Dial Transplant. 2003;18(2):273–9.CrossRefPubMed
16.
go back to reference Kopp N, Leumann E. Changing Pattern of Primary Hyperoxaluria in Switzerland. Nephrol Dial Transplant. 1995;10(12):2224–7.CrossRefPubMed Kopp N, Leumann E. Changing Pattern of Primary Hyperoxaluria in Switzerland. Nephrol Dial Transplant. 1995;10(12):2224–7.CrossRefPubMed
18.
go back to reference Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, Ghorbani A, Shi X, Helenius IT, O’Donnell CJ, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18:130–43.CrossRefPubMedPubMedCentral Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, Ghorbani A, Shi X, Helenius IT, O’Donnell CJ, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18:130–43.CrossRefPubMedPubMedCentral
19.
go back to reference Yoshino Y, Kohara K, Abe M, Ochi S, Mori Y, Yamashita K, Igase M, Tabara Y, Mori T, Miki T, Ueno S. Missense Variants of the Alanine: Glyoxylate Aminotransferase 2 Gene Correlated with Carotid Atherosclerosis in the Japanese Population. J Biol Regul Homeost Agents. 2014;28(4):605–14.PubMed Yoshino Y, Kohara K, Abe M, Ochi S, Mori Y, Yamashita K, Igase M, Tabara Y, Mori T, Miki T, Ueno S. Missense Variants of the Alanine: Glyoxylate Aminotransferase 2 Gene Correlated with Carotid Atherosclerosis in the Japanese Population. J Biol Regul Homeost Agents. 2014;28(4):605–14.PubMed
20.
go back to reference Dietzen DJ, Wilhite TR, Kenagy DN, Milliner DS, Smith CH, Landt M. Extraction of Glyceric and Glycolic Acids from Urine with Tetrahydrofuran: Utility in Detection of Primary Hyperoxaluria. Clin Chem. 1997;43(8):1315–20.PubMed Dietzen DJ, Wilhite TR, Kenagy DN, Milliner DS, Smith CH, Landt M. Extraction of Glyceric and Glycolic Acids from Urine with Tetrahydrofuran: Utility in Detection of Primary Hyperoxaluria. Clin Chem. 1997;43(8):1315–20.PubMed
21.
go back to reference Inoue Y, Shinka T, Ohse M, Kuhara T. Differential Chemical Diagnosis of Primary Hyperoxaluria Type Ii. Highly Sensitive Analysis of Optical Isomers of Glyceric Acid by Gc/Ms as Diastereoisomeric Derivatives. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;823(1):2–6.CrossRefPubMed Inoue Y, Shinka T, Ohse M, Kuhara T. Differential Chemical Diagnosis of Primary Hyperoxaluria Type Ii. Highly Sensitive Analysis of Optical Isomers of Glyceric Acid by Gc/Ms as Diastereoisomeric Derivatives. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;823(1):2–6.CrossRefPubMed
22.
go back to reference Blau N, Duran M, Gibson KM. Laboratory Guide to the Methods in Biochemical Genetics. Berlin Heidelberg: Scriver C.R. Springer-Verlag; 2008.CrossRef Blau N, Duran M, Gibson KM. Laboratory Guide to the Methods in Biochemical Genetics. Berlin Heidelberg: Scriver C.R. Springer-Verlag; 2008.CrossRef
23.
go back to reference Rumsby G, Sharma A, Cregeen DP, Solomon LR. Primary Hyperoxaluria Type 2 without L-Glycericaciduria: Is the Disease Under-Diagnosed? Nephrol Dial Transplant. 2001;16(8):1697–9.CrossRefPubMed Rumsby G, Sharma A, Cregeen DP, Solomon LR. Primary Hyperoxaluria Type 2 without L-Glycericaciduria: Is the Disease Under-Diagnosed? Nephrol Dial Transplant. 2001;16(8):1697–9.CrossRefPubMed
24.
go back to reference Goldberg JD, Yoshida T, Brick P. Crystal Structure of a Nad-Dependent D-Glycerate Dehydrogenase at 2.4 a Resolution. J Mol Biol. 1994;236(4):1123–40.CrossRefPubMed Goldberg JD, Yoshida T, Brick P. Crystal Structure of a Nad-Dependent D-Glycerate Dehydrogenase at 2.4 a Resolution. J Mol Biol. 1994;236(4):1123–40.CrossRefPubMed
25.
go back to reference Murzin AG, Brenner SE, Hubbard T, Chothia C. Scop: A Structural Classification of Proteins Database for the Investigation of Sequences and Structures. J Mol Biol. 1995;247(4):536–40.PubMed Murzin AG, Brenner SE, Hubbard T, Chothia C. Scop: A Structural Classification of Proteins Database for the Investigation of Sequences and Structures. J Mol Biol. 1995;247(4):536–40.PubMed
26.
go back to reference Tamaki N, Kaneko M, Mizota C, Kikugawa M, Fujimoto S. Purification, Characterization and Inhibition of D-3-Aminoisobutyrate Aminotransferase from the Rat Liver. Eur J Biochem. 1990;189(1):39–45.CrossRefPubMed Tamaki N, Kaneko M, Mizota C, Kikugawa M, Fujimoto S. Purification, Characterization and Inhibition of D-3-Aminoisobutyrate Aminotransferase from the Rat Liver. Eur J Biochem. 1990;189(1):39–45.CrossRefPubMed
27.
go back to reference Armstrong MD, Yates K, Kakimoto Y, Taniguchi K, Kappe T. Excretion of β-aminoisobutyric acid by man. J Biol Chem. 1963;238:1447–55. Armstrong MD, Yates K, Kakimoto Y, Taniguchi K, Kappe T. Excretion of β-aminoisobutyric acid by man. J Biol Chem. 1963;238:1447–55.
28.
go back to reference Van Kuilenburg AB, Stroomer AE, Van Lenthe H, Abeling NG, Van Gennip AH. New Insights in Dihydropyrimidine Dehydrogenase Deficiency: A Pivotal Role for Beta-Aminoisobutyric Acid? Biochem J. 2004;379(1):119–24.CrossRefPubMedPubMedCentral Van Kuilenburg AB, Stroomer AE, Van Lenthe H, Abeling NG, Van Gennip AH. New Insights in Dihydropyrimidine Dehydrogenase Deficiency: A Pivotal Role for Beta-Aminoisobutyric Acid? Biochem J. 2004;379(1):119–24.CrossRefPubMedPubMedCentral
29.
go back to reference Kittel A, Muller F, Konig J, Mieth M, Sticht H, Zolk O, Kralj A, Heinrich MR, Fromm MF, Maas R. Alanine-Glyoxylate Aminotransferase 2 (Agxt2) Polymorphisms Have Considerable Impact on Methylarginine and Beta-Aminoisobutyrate Metabolism in Healthy Volunteers. PLoS One. 2014;9(2):e88544.CrossRefPubMedPubMedCentral Kittel A, Muller F, Konig J, Mieth M, Sticht H, Zolk O, Kralj A, Heinrich MR, Fromm MF, Maas R. Alanine-Glyoxylate Aminotransferase 2 (Agxt2) Polymorphisms Have Considerable Impact on Methylarginine and Beta-Aminoisobutyrate Metabolism in Healthy Volunteers. PLoS One. 2014;9(2):e88544.CrossRefPubMedPubMedCentral
31.
go back to reference Landaas S, Solem E. High excretion of β-aminoisobutyric acid in patients with ketoacidosis. Scand J Clin Lab Invest. 1983;43:95–7.CrossRefPubMed Landaas S, Solem E. High excretion of β-aminoisobutyric acid in patients with ketoacidosis. Scand J Clin Lab Invest. 1983;43:95–7.CrossRefPubMed
32.
go back to reference van Gennip AH, Kamerling JP, de Bree PK, Wadman SK. Linear relationship between the R- and S-enantiomer of β-aminoisobutyric acid in human urine. Clin Chim Acta. 1981;116:261–7.CrossRefPubMed van Gennip AH, Kamerling JP, de Bree PK, Wadman SK. Linear relationship between the R- and S-enantiomer of β-aminoisobutyric acid in human urine. Clin Chim Acta. 1981;116:261–7.CrossRefPubMed
33.
go back to reference Tamaki N, Fujimoto S, Mizota C, Kikugawa M. Identity of Beta-Alanine-Oxo-Glutarate Aminotransferase and L-Beta-Aminoisobutyrate Aminotransferase in Rat Liver. Biochim Biophys Acta. 1987;925(2):238–40.CrossRefPubMed Tamaki N, Fujimoto S, Mizota C, Kikugawa M. Identity of Beta-Alanine-Oxo-Glutarate Aminotransferase and L-Beta-Aminoisobutyrate Aminotransferase in Rat Liver. Biochim Biophys Acta. 1987;925(2):238–40.CrossRefPubMed
34.
go back to reference Tamaki N, Aoyama H, Kubo K, Ikeda T, Hama T. Purification and Properties of Beta-Alanine Aminotransferase from Rabbit Liver. J Biochem. 1982;92(4):1009–17.CrossRefPubMed Tamaki N, Aoyama H, Kubo K, Ikeda T, Hama T. Purification and Properties of Beta-Alanine Aminotransferase from Rabbit Liver. J Biochem. 1982;92(4):1009–17.CrossRefPubMed
35.
go back to reference Landaas S. Accumulation of 3-Hydroxyisobutyric Acid, 2-Methyl-3-Hydroxybutyric Acid and 3-Hydroxyisovaleric Acid in Ketoacidosis. Clin Chim Acta. 1975;64(2):143–54.CrossRefPubMed Landaas S. Accumulation of 3-Hydroxyisobutyric Acid, 2-Methyl-3-Hydroxybutyric Acid and 3-Hydroxyisovaleric Acid in Ketoacidosis. Clin Chim Acta. 1975;64(2):143–54.CrossRefPubMed
36.
go back to reference Liebich HM, Forst C. Hydroxycarboxylic and Oxocarboxylic Acids in Urine: Products from Branched-Chain Amino Acid Degradation and from Ketogenesis. J Chromatogr. 1984;309(2):225–42.CrossRefPubMed Liebich HM, Forst C. Hydroxycarboxylic and Oxocarboxylic Acids in Urine: Products from Branched-Chain Amino Acid Degradation and from Ketogenesis. J Chromatogr. 1984;309(2):225–42.CrossRefPubMed
37.
go back to reference Pollitt RJ, Green A, Smith R. Excessive Excretion of Beta-Alanine and of 3-Hydroxypropionic, R- and S-3-Aminoisobutyric, R- and S-3-Hydroxyisobutyric and S-2-(Hydroxymethyl)Butyric Acids Probably Due to a Defect in the Metabolism of the Corresponding Malonic Semialdehydes. J Inherit Metab Dis. 1985;8(2):75–9.CrossRefPubMed Pollitt RJ, Green A, Smith R. Excessive Excretion of Beta-Alanine and of 3-Hydroxypropionic, R- and S-3-Aminoisobutyric, R- and S-3-Hydroxyisobutyric and S-2-(Hydroxymethyl)Butyric Acids Probably Due to a Defect in the Metabolism of the Corresponding Malonic Semialdehydes. J Inherit Metab Dis. 1985;8(2):75–9.CrossRefPubMed
38.
go back to reference Chambliss KL, Gray RG, Rylance G, Pollitt RJ, Gibson KM. Molecular Characterization of Methylmalonate Semialdehyde Dehydrogenase Deficiency. J Inherit Metab Dis. 2000;23(5):497–504.CrossRefPubMed Chambliss KL, Gray RG, Rylance G, Pollitt RJ, Gibson KM. Molecular Characterization of Methylmalonate Semialdehyde Dehydrogenase Deficiency. J Inherit Metab Dis. 2000;23(5):497–504.CrossRefPubMed
39.
go back to reference Goodwin GW, Rougraff PM, Davis EJ, Harris R. A Purification and Characterization of Methylmalonate-Semialdehyde Dehydrogenase from Rat Liver. Identity to Malonate-Semialdehyde Dehydrogenase. J Biol Chem. 1989;264(25):14965–71.PubMed Goodwin GW, Rougraff PM, Davis EJ, Harris R. A Purification and Characterization of Methylmalonate-Semialdehyde Dehydrogenase from Rat Liver. Identity to Malonate-Semialdehyde Dehydrogenase. J Biol Chem. 1989;264(25):14965–71.PubMed
41.
Metadata
Title
Severe child form of primary hyperoxaluria type 2 - a case report revealing consequence of GRHPR deficiency on metabolism
Authors
Jana Konkoľová
Ján Chandoga
Juraj Kováčik
Marcel Repiský
Veronika Kramarová
Ivana Paučinová
Daniel Böhmer
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2017
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-017-0421-8

Other articles of this Issue 1/2017

BMC Medical Genetics 1/2017 Go to the issue