Skip to main content
Top
Published in: BMC Medical Imaging 1/2020

Open Access 01-12-2020 | Research article

Quantitative comparison of two-dimensional and three-dimensional strain measurement using MRI feature tracking in repair Fontan patients and normal child volunteers

Authors: Liwei Hu, Qian Wang, Barton P. Gregory, Rong Zhen Ouyang, Aimin Sun, Chen Guo, Tongtong Han, Yumin Zhong

Published in: BMC Medical Imaging | Issue 1/2020

Login to get access

Abstract

Background

The accuracy of 2D and 3D strain analyses was evaluated by comparing strain and cardiac function parameters in Fontan repair patients and normal child volunteers.

Methods

We retrospectively enrolled 32 patients with Fontan circulation and 32 child volunteers who had undergone clinical cardiac magnetic resonance (CMR) assessment of the dominant ventricle with a 1.5-Tesla MRI scanner. Global and regional strain (2D and 3D) of the dominant ventricle in both groups was assessed using CMR feature-tracking. Correlations between cardiac function and strain data were assessed using Pearson’s correlation coefficient values. The intraclass correlation coefficient (ICC) and coefficient of variation (CoV) were determined to evaluate repeatability and agreement.

Results

The 2D GLS showed significant differences between the Fontan repair patients and volunteers (− 16.49 ± 5.00 vs. -19.49 ± 2.03; p = 0.002). The 2D GRS and 2D GCS showed no significant differences between two groups. 2D GRS: 38.96 ± 14.48 vs. 37.46 ± 7.77; 2D GCS: − 17.64 ± 5.00 vs. -16.89 ± 2.96, respectively; p > 0.05). The 3D global radial strain (GRS), global circumferential strain (GCS), and global longitudinal strain (GLS) showed significant differences between the Fontan repair patients and volunteers (3D GRS: 36.35 ± 16.72 vs. 44.96 ± 9.98; 3D GLS: − 8.86 ± 6.84 vs. -13.67 ± 2.44; 3D GCS: − 13.70 ± 7.84 vs. -18.01 ± 1.78; p < 0.05, respectively). The ejection fraction (EF) and 3D GCS were significantly associated (r = − 0.491, p = 0.004). The 3D GCS showed correlations with the indexed end-diastolic volume (EDV) (r = 0.523, p = 0.002) and indexed end-systolic volume (ESV) (r = 0.602, p < 0.001). 3D strain showed good reproducibility, with GCS showing the best inter-observer agreement (ICC = 0.87 and CoV = 5.15), followed by GLS (ICC = 0.84 and CoV = 5.36).

Conclusions

3D GCS is feasible, highly reproducible, and strongly correlated with conventional cardiac function measures. 3D GCS assessments may be useful for monitoring abnormal myocardial motion in patients with Fontan circulation.
Literature
12.
go back to reference Berganza FM, de Alba CG, Özcelik N, et al. Cardiac magnetic resonance feature tracking biventricular two-dimensional and three-dimensional strains to evaluate ventricular function in children after repaired tetralogy of Fallot as compared with healthy children. Pediatr Cardiol. 2017;38:566–74 https://doi.org/10.1007/s00246-016-1549-6.CrossRef Berganza FM, de Alba CG, Özcelik N, et al. Cardiac magnetic resonance feature tracking biventricular two-dimensional and three-dimensional strains to evaluate ventricular function in children after repaired tetralogy of Fallot as compared with healthy children. Pediatr Cardiol. 2017;38:566–74 https://​doi.​org/​10.​1007/​s00246-016-1549-6.CrossRef
18.
Metadata
Title
Quantitative comparison of two-dimensional and three-dimensional strain measurement using MRI feature tracking in repair Fontan patients and normal child volunteers
Authors
Liwei Hu
Qian Wang
Barton P. Gregory
Rong Zhen Ouyang
Aimin Sun
Chen Guo
Tongtong Han
Yumin Zhong
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2020
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-020-0413-6

Other articles of this Issue 1/2020

BMC Medical Imaging 1/2020 Go to the issue