Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Lung Cancer | Research article

Comparative evaluation of image registration methods with different interest regions in lung cancer radiotherapy

Authors: Xiaohui Cao, Ming Liu, Fushan Zhai, Nan Li, Feng Li, Chaoen Bao, Yinliang Liu, Gang Chen

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

Lung cancer is a leading cause of morbidity and mortality worldwide. Radiotherapy for lung cancer is beneficial in both the radical and palliative settings, and technologic advances in recent years now afford an opportunity for this treatment to be more targeted than ever before. Although the delivery of more accurate forms of radiotherapy has minimized the risks of side-effects, how to utilize this treatment to optimize outcomes remains questionable. This study aimed to evaluate the accuracy of cone beam computed tomography (CBCT) image registration used in image-guided radiotherapy, providing reasonable guidance for clinic application of CBCT in lung cancer.

Methods

A total of 53 patients with lung carcinoma including 34 central and 19 peripheral lesions were collected in this study. Varian-IX linear accelerator on-board imaging (OBI) system was used to acquire CBCT scans in three-dimensional (3D) conformal radiotherapy before delivery. Different regions (whole lung/target/vertebrae/ipsilateral structure) were manually registered, and the position deviation and the registration time were analyzed.

Results

It was suggested that 34 cases belonged to central type and 19 cases belonged to peripheral type. The volume of left lung and right lung was 1242.98 ± 452.46 cc, 1689.69 ± 574.31 cc, respectively. Tumor size was 6.65 ± 3.87 cm in diameter, and 129.67 ± 136.48 cc in volume. The percentage of left lung and right lung was 6.17 ± 1.24%, 4.74 ± 0.38%, respectively. The position deviation value and absolute value of image registration methods of X, Y and Z axis were not significant (P > 0.05). However, registration time (s) between whole lung registration group, tumor registration group, vertebral body registration group, affected lung registration group, and artificial registration group, was 3.651 ± 0.867 s, 1.144 ± 0.129 s, 1.226 ± 0.126 s, 2.081 ± 0.427 s, 179.491 ± 71.975 s, respectively. The differences were significant (P < 0.05). The registration differences between small tumor group and large tumor group were not statistically significant (P > 0.05).

Conclusion

The automatic image matching of OBI is accuracy and high reliability in recognition of offset error. Registering body or ipsilateral structure is recommended to be used in CBCT for lung cancer.
Literature
1.
go back to reference Sun KX, Zheng RS, Zeng HM, Zhang SW, Zou XN, Gu XY, Xia CF, Yang ZX, Li H, Chen WQ, He J. The incidence and mortality of lung cancer in China, 2014. Zhonghua Zhong Liu Za Zhi. 2018;40(11):805–11.PubMed Sun KX, Zheng RS, Zeng HM, Zhang SW, Zou XN, Gu XY, Xia CF, Yang ZX, Li H, Chen WQ, He J. The incidence and mortality of lung cancer in China, 2014. Zhonghua Zhong Liu Za Zhi. 2018;40(11):805–11.PubMed
2.
go back to reference Corkum MT, Rodrigues GB. Patient selection for thoracic radiotherapy in extensive-stage small-cell lung cancer. Lung Cancer Manag. 2017;6(2):47–53.CrossRef Corkum MT, Rodrigues GB. Patient selection for thoracic radiotherapy in extensive-stage small-cell lung cancer. Lung Cancer Manag. 2017;6(2):47–53.CrossRef
3.
go back to reference Deshpande S, Dhote D, Thakur K, Pawar A, Kumar R, Kumar M, Kulkarni MS, Sharma SD, Kannan V. Measurement of eye lens dose for Varian on-board imaging with different cone-beam computed tomography acquisition techniques. J Med Phys. 2016;41(3):177–81.CrossRef Deshpande S, Dhote D, Thakur K, Pawar A, Kumar R, Kumar M, Kulkarni MS, Sharma SD, Kannan V. Measurement of eye lens dose for Varian on-board imaging with different cone-beam computed tomography acquisition techniques. J Med Phys. 2016;41(3):177–81.CrossRef
4.
go back to reference Richter A, Hu Q, Steglich D, Baier K, Wilbert J, Guckenberger M, Flentje M. Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol. 2008;3:42.CrossRef Richter A, Hu Q, Steglich D, Baier K, Wilbert J, Guckenberger M, Flentje M. Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol. 2008;3:42.CrossRef
5.
go back to reference Zhang R, Li P, Li Q, Qiao Y, Xu T, Ruan P, Song Q, Fu Z. Radiotherapy improves the survival of patients with extensive-disease small-cell lung cancer: a propensity score matched analysis of surveillance, epidemiology, and end results database. Cancer Manag Res. 2018;10:6525–35.CrossRef Zhang R, Li P, Li Q, Qiao Y, Xu T, Ruan P, Song Q, Fu Z. Radiotherapy improves the survival of patients with extensive-disease small-cell lung cancer: a propensity score matched analysis of surveillance, epidemiology, and end results database. Cancer Manag Res. 2018;10:6525–35.CrossRef
6.
go back to reference Barker JL Jr, Garden AS, Ang KK, O'Daniel JC, Wang H, Court LE, Morrison WH, Rosenthal DI, Chao KS, Tucker SL, Mohan R, Dong L. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70.CrossRef Barker JL Jr, Garden AS, Ang KK, O'Daniel JC, Wang H, Court LE, Morrison WH, Rosenthal DI, Chao KS, Tucker SL, Mohan R, Dong L. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70.CrossRef
7.
go back to reference Hashido T, Nakasone S, Fukao M, Ota S, Inoue S. Comparison between manual and automatic image registration in image-guided radiation therapy using megavoltage cone-beam computed tomography with an imaging beam line for prostate cancer. Radiol Phys Technol. 2018;11(4):392–405.CrossRef Hashido T, Nakasone S, Fukao M, Ota S, Inoue S. Comparison between manual and automatic image registration in image-guided radiation therapy using megavoltage cone-beam computed tomography with an imaging beam line for prostate cancer. Radiol Phys Technol. 2018;11(4):392–405.CrossRef
8.
go back to reference Mohandass P, Khanna D, Kumar TM, Thiyagaraj T, Saravanan C, Bhalla NK, Puri A. Study to compare the effect of different registration methods on patient setup uncertainties in cone-beam computed tomography during volumetric modulated arc therapy for breast Cancer patients. J Med Phys. 2018;43(4):207–13.CrossRef Mohandass P, Khanna D, Kumar TM, Thiyagaraj T, Saravanan C, Bhalla NK, Puri A. Study to compare the effect of different registration methods on patient setup uncertainties in cone-beam computed tomography during volumetric modulated arc therapy for breast Cancer patients. J Med Phys. 2018;43(4):207–13.CrossRef
9.
go back to reference Hu CY, Li JB, Wang JZ, Wang W, Li FX, Guo YL. Comparison of gross tumor volume of primary oesophageal cancer based on contrast-enhanced three-dimensional, four-dimensional, and cone beam computed tomography. Oncotarget. 2017;8(56):95577–85.CrossRef Hu CY, Li JB, Wang JZ, Wang W, Li FX, Guo YL. Comparison of gross tumor volume of primary oesophageal cancer based on contrast-enhanced three-dimensional, four-dimensional, and cone beam computed tomography. Oncotarget. 2017;8(56):95577–85.CrossRef
10.
go back to reference Chen W, Bai P, Pan J, Xu Y, Chen K. Changes in tumor volumes and spatial locations relative to Normal tissues during cervical Cancer radiotherapy assessed by cone beam computed tomography. Technol Cancer Res Treat. 2017;16(2):246–52.CrossRef Chen W, Bai P, Pan J, Xu Y, Chen K. Changes in tumor volumes and spatial locations relative to Normal tissues during cervical Cancer radiotherapy assessed by cone beam computed tomography. Technol Cancer Res Treat. 2017;16(2):246–52.CrossRef
11.
go back to reference Friedrich RE, Heiland M, Assaf AT, Riecke B. Cone beam computed tomography in the differential diagnosis of mental neuropathy (numb chin syndrome) in metastatic colon cancer. Anticancer Res. 2013;33(4):1757–60.PubMed Friedrich RE, Heiland M, Assaf AT, Riecke B. Cone beam computed tomography in the differential diagnosis of mental neuropathy (numb chin syndrome) in metastatic colon cancer. Anticancer Res. 2013;33(4):1757–60.PubMed
12.
go back to reference Star-Lack J, Sun M, Oelhafen M, Berkus T, Pavkovich J, Brehm M, Arheit M, Paysan P, Wang A, Munro P, Seghers D, Carvalho LM, Verbakel WFAR. A modified McKinnon-bates (MKB) algorithm for improved 4D cone-beam computed tomography (CBCT) of the lung. Med Phys. 2018; In press. Star-Lack J, Sun M, Oelhafen M, Berkus T, Pavkovich J, Brehm M, Arheit M, Paysan P, Wang A, Munro P, Seghers D, Carvalho LM, Verbakel WFAR. A modified McKinnon-bates (MKB) algorithm for improved 4D cone-beam computed tomography (CBCT) of the lung. Med Phys. 2018; In press.
13.
go back to reference Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK. A survey of image-guided radiation therapy used in the united state. Int J Radiat Oncol Biol Phys. 2010;116:3953–60. Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK. A survey of image-guided radiation therapy used in the united state. Int J Radiat Oncol Biol Phys. 2010;116:3953–60.
14.
go back to reference Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, Carver B, Coleman J, Lovelock M, Hunt M. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84(1):125–9.CrossRef Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, Carver B, Coleman J, Lovelock M, Hunt M. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84(1):125–9.CrossRef
15.
go back to reference Chung HT, Xia P, Chan LW, Park-Somers E, Roach M 3rd. Does image-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk prostate cancer? Comparison between IG-IMRT and IMRT. Int J Radiat Oncol Biol Phys. 2009;73(1):53–60.CrossRef Chung HT, Xia P, Chan LW, Park-Somers E, Roach M 3rd. Does image-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk prostate cancer? Comparison between IG-IMRT and IMRT. Int J Radiat Oncol Biol Phys. 2009;73(1):53–60.CrossRef
16.
go back to reference Aboudaram A, Khalifa J, Massabeau C, Simon L, Hadj Henni A, Thureau S. Image-guided radiotherapy in lung cancer. Cancer Radiother. 2018;22(6–7):602–7.CrossRef Aboudaram A, Khalifa J, Massabeau C, Simon L, Hadj Henni A, Thureau S. Image-guided radiotherapy in lung cancer. Cancer Radiother. 2018;22(6–7):602–7.CrossRef
17.
go back to reference Ren XC, Liu YE, Li J, Lin Q. Progress in image-guided radiotherapy for the treatment of non-small cell lung cancer. World J Radiol. 2019;11(3):46–54.CrossRef Ren XC, Liu YE, Li J, Lin Q. Progress in image-guided radiotherapy for the treatment of non-small cell lung cancer. World J Radiol. 2019;11(3):46–54.CrossRef
18.
go back to reference Yegya-Raman N, Kim S, Deek MP, Li D, Gupta A, Bond L, Dwivedi A, Braver JK, Reyhan M, Mittal A, Gui B, Malhotra J, Aisner J, Jabbour SK. Daily image guidance with cone beam computed tomography may reduce radiation pneumonitis in Unresectable non-small cell lung Cancer. Int J Radiat Oncol Biol Phys. 2018;101(5):1104–12.CrossRef Yegya-Raman N, Kim S, Deek MP, Li D, Gupta A, Bond L, Dwivedi A, Braver JK, Reyhan M, Mittal A, Gui B, Malhotra J, Aisner J, Jabbour SK. Daily image guidance with cone beam computed tomography may reduce radiation pneumonitis in Unresectable non-small cell lung Cancer. Int J Radiat Oncol Biol Phys. 2018;101(5):1104–12.CrossRef
19.
go back to reference Leonardi R. Cone-beam computed tomography and three-dimensional orthodontics. Where we are and future perspectives. J Orthod. 2019;46:45–8.CrossRef Leonardi R. Cone-beam computed tomography and three-dimensional orthodontics. Where we are and future perspectives. J Orthod. 2019;46:45–8.CrossRef
20.
go back to reference Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.CrossRef Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.CrossRef
21.
go back to reference Muirhead R, van der Weide L, van Sornsen de Koste JR, Cover KS, Senan S. Use of megavoltage cine-images for studying intra-thoracic motion during radiotherapy for locally advanced lung cancer. Radiother Oncol. 2011;99(2):155–60.CrossRef Muirhead R, van der Weide L, van Sornsen de Koste JR, Cover KS, Senan S. Use of megavoltage cine-images for studying intra-thoracic motion during radiotherapy for locally advanced lung cancer. Radiother Oncol. 2011;99(2):155–60.CrossRef
22.
go back to reference Tai K, Park JH, Mishima K, Hotokezaka H. Using superimposition of 3-dimensional cone-beam computed tomography images with surface-based registration in growing patients. J Clin Pediatr Dent. 2010;34(4):361–7.CrossRef Tai K, Park JH, Mishima K, Hotokezaka H. Using superimposition of 3-dimensional cone-beam computed tomography images with surface-based registration in growing patients. J Clin Pediatr Dent. 2010;34(4):361–7.CrossRef
23.
go back to reference Sun L, Hwang HS, Lee KM. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2018;153(3):355–61.CrossRef Sun L, Hwang HS, Lee KM. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2018;153(3):355–61.CrossRef
24.
go back to reference Kanakavelu N, Samuel EJ. Accuracy in automatic image registration between MV cone beam computed tomography and planning kV computed tomography in image guided radiotherapy. Rep Pract Oncol Radiother. 2016;21(5):487–94.CrossRef Kanakavelu N, Samuel EJ. Accuracy in automatic image registration between MV cone beam computed tomography and planning kV computed tomography in image guided radiotherapy. Rep Pract Oncol Radiother. 2016;21(5):487–94.CrossRef
25.
go back to reference Ruellas AC, Huanca Ghislanzoni LT, Gomes MR, Danesi C, Lione R, Nguyen T, McNamara JA Jr, Cozza P, Franchi L, Cevidanes LH. Comparison and reproducibility of 2 regions of reference for maxillary regional registration with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2016;149(4):533–42.CrossRef Ruellas AC, Huanca Ghislanzoni LT, Gomes MR, Danesi C, Lione R, Nguyen T, McNamara JA Jr, Cozza P, Franchi L, Cevidanes LH. Comparison and reproducibility of 2 regions of reference for maxillary regional registration with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2016;149(4):533–42.CrossRef
26.
go back to reference Balik S, Weiss E, Jan N, Roman N, Sleeman WC, Fatyga M, Christensen GE, Zhang C, Murphy MJ, Lu J, Keall P, Williamson JF, Hugo GD. Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86(2):372–9.CrossRef Balik S, Weiss E, Jan N, Roman N, Sleeman WC, Fatyga M, Christensen GE, Zhang C, Murphy MJ, Lu J, Keall P, Williamson JF, Hugo GD. Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86(2):372–9.CrossRef
27.
go back to reference Wang X, Zhong R, Bai S, Xu Q, Zhao Y, Wang J, Jiang X, Shen Y, Xu F, Wei Y. Lung tumor reproducibility with active breath control (ABC) in image-guided radiotherapy based on cone-beam computed tomography with two registration methods. Radiother Oncol. 2011;99(2):148–54.CrossRef Wang X, Zhong R, Bai S, Xu Q, Zhao Y, Wang J, Jiang X, Shen Y, Xu F, Wei Y. Lung tumor reproducibility with active breath control (ABC) in image-guided radiotherapy based on cone-beam computed tomography with two registration methods. Radiother Oncol. 2011;99(2):148–54.CrossRef
28.
go back to reference Ottosson W, Baker M, Hedman M, Behrens CF, Sjöström D. Evaluation of setup accuracy for NSCLC patients; studying the impact of different types of cone-beam CT matches based on whole thorax, columna vertebralis, and GTV. Acta Oncol. 2010;49(7):1184–91.CrossRef Ottosson W, Baker M, Hedman M, Behrens CF, Sjöström D. Evaluation of setup accuracy for NSCLC patients; studying the impact of different types of cone-beam CT matches based on whole thorax, columna vertebralis, and GTV. Acta Oncol. 2010;49(7):1184–91.CrossRef
29.
go back to reference Nakamura M, Akimoto M, Mukumoto N, Yamada M, Tanabe H, Ueki N, Matsuo Y, Mizowaki T, Kokubo M, Hiraoka M. Influence of the correlation modeling period on the prediction accuracy of infrared marker-based dynamic tumor tracking using a gimbaled X-ray head. Phys Med. 2015;31:204–9.CrossRef Nakamura M, Akimoto M, Mukumoto N, Yamada M, Tanabe H, Ueki N, Matsuo Y, Mizowaki T, Kokubo M, Hiraoka M. Influence of the correlation modeling period on the prediction accuracy of infrared marker-based dynamic tumor tracking using a gimbaled X-ray head. Phys Med. 2015;31:204–9.CrossRef
Metadata
Title
Comparative evaluation of image registration methods with different interest regions in lung cancer radiotherapy
Authors
Xiaohui Cao
Ming Liu
Fushan Zhai
Nan Li
Feng Li
Chaoen Bao
Yinliang Liu
Gang Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0402-9

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue