Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Computed Tomography | Research article

Comparison of conventional and Si-photomultiplier-based PET systems for image quality and diagnostic performance

Authors: Jenny Oddstig, Sigrid Leide Svegborn, Helen Almquist, Ulrika Bitzén, Sabine Garpered, Fredrik Hedeer, Cecilia Hindorf, Jonas Jögi, Lena Jönsson, David Minarik, Richard Petersson, Annika Welinder, Per Wollmer, Elin Trägårdh

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

A new generation of positron emission tomography with computed tomography (PET-CT) was recently introduced using silicon (Si) photomultiplier (PM)-based technology. Our aim was to compare the image quality and diagnostic performance of a SiPM-based PET-CT (Discovery MI; GE Healthcare, Milwaukee, WI, USA) with a time-of-flight PET-CT scanner with a conventional PM detector (Gemini TF; Philips Healthcare, Cleveland, OH, USA), including reconstruction algorithms per vendor’s recommendations.

Methods

Imaging of the National Electrical Manufacturers Association IEC body phantom and 16 patients was carried out using 1.5 min/bed for the Discovery MI PET-CT and 2 min/bed for the Gemini TF PET-CT. Images were analysed for recovery coefficients for the phantom, signal-to-noise ratio in the liver, standardized uptake values (SUV) in lesions, number of lesions and metabolic TNM classifications in patients.

Results

In phantom, the correct (> 90%) activity level was measured for spheres ≥17 mm for Discovery MI, whereas the Gemini TF reached a correct measured activity level for the 37-mm sphere. In patient studies, metabolic TNM classification was worse using images obtained from the Discovery MI compared those obtained from the Gemini TF in 4 of 15 patients. A trend toward more malignant, inflammatory and unclear lesions was found using images acquired with the Discovery MI compared with the Gemini TF, but this was not statistically significant. Lesion-to-blood-pool SUV ratios were significantly higher in images from the Discovery MI compared with the Gemini TF for lesions smaller than 1 cm (p < 0.001), but this was not the case for larger lesions (p = 0.053). The signal-to-noise ratio in the liver was similar between platforms (p = 0.52). Also, shorter acquisition times were possible using the Discovery MI, with preserved signal-to-noise ratio in the liver.

Conclusions

Image quality was better with Discovery MI compared to conventional Gemini TF. Although no gold standard was available, the results indicate that the new PET-CT generation will provide potentially better diagnostic performance.
Literature
1.
go back to reference Evidence-based indications for the use of PET-CT in the United Kingdom 2016. In.; 2016. Evidence-based indications for the use of PET-CT in the United Kingdom 2016. In.; 2016.
2.
go back to reference van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, Lubberink M, Willemsen ATM, Visser EP. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):4–16.PubMedPubMedCentral van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, Lubberink M, Willemsen ATM, Visser EP. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):4–16.PubMedPubMedCentral
3.
go back to reference National Electrical Manufacturers Association. NEMA NU-2 2012: performance measurement of positron emission Tomographs. In.; 2013. National Electrical Manufacturers Association. NEMA NU-2 2012: performance measurement of positron emission Tomographs. In.; 2013.
4.
go back to reference Hsu DF, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017. Hsu DF, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017.
5.
go back to reference Baratto L, Park SY, Hatami N, Davidzon G, Srinivas S, Gambhir SS, Iagaru A. 18F-FDG silicon photomultiplier PET/CT: a pilot study comparing semi-quantitative measurements with standard PET/CT. PLoS One. 2017;12(6):e0178936.CrossRef Baratto L, Park SY, Hatami N, Davidzon G, Srinivas S, Gambhir SS, Iagaru A. 18F-FDG silicon photomultiplier PET/CT: a pilot study comparing semi-quantitative measurements with standard PET/CT. PLoS One. 2017;12(6):e0178936.CrossRef
6.
go back to reference Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, Muzic RF Jr, Su KH, O'Donnell JK, Faulhaber PF. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med. 2015;56(9):1378–85.CrossRef Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, Muzic RF Jr, Su KH, O'Donnell JK, Faulhaber PF. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med. 2015;56(9):1378–85.CrossRef
7.
go back to reference Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q. clear on an LYSO PET/CT system. J Nucl Med. 2015;56(9):1447–52.CrossRef Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q. clear on an LYSO PET/CT system. J Nucl Med. 2015;56(9):1447–52.CrossRef
8.
go back to reference Zasadny KR, Wahl RL. Enhanced FDG-PET tumor imaging with correlation-coefficient filtered influx-constant images. J Nucl Med. 1996;37(2):371–4.PubMed Zasadny KR, Wahl RL. Enhanced FDG-PET tumor imaging with correlation-coefficient filtered influx-constant images. J Nucl Med. 1996;37(2):371–4.PubMed
9.
go back to reference Beaulieu S, Kinahan P, Tseng J, Dunnwald LK, Schubert EK, Pham P, Lewellen B, Mankoff DA. SUV varies with time after injection in (18)F-FDG PET of breast cancer: characterization and method to adjust for time differences. J Nucl Med. 2003;44(7):1044–50.PubMed Beaulieu S, Kinahan P, Tseng J, Dunnwald LK, Schubert EK, Pham P, Lewellen B, Mankoff DA. SUV varies with time after injection in (18)F-FDG PET of breast cancer: characterization and method to adjust for time differences. J Nucl Med. 2003;44(7):1044–50.PubMed
10.
go back to reference Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW. Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med. 2004;45(4):559–66.PubMed Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW. Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med. 2004;45(4):559–66.PubMed
11.
go back to reference Lantos J, Iagaru A, Levin C. Standard OSEM vs. Q. Clear PET image reconstruction: an analysis of phantom data. J Nucl Med. 2015;56(Suppl 3):264. Lantos J, Iagaru A, Levin C. Standard OSEM vs. Q. Clear PET image reconstruction: an analysis of phantom data. J Nucl Med. 2015;56(Suppl 3):264.
12.
go back to reference Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med. 2005;46(3):424–8.PubMed Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med. 2005;46(3):424–8.PubMed
13.
go back to reference Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.CrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.CrossRef
14.
go back to reference Aschoff P, Plathow C, Beyer T, Lichy MP, Erb G, Oksuz MO, Claussen CD, Pfannenberg C. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging. Eur J Nucl Med Mol Imaging. 2012;39(2):316–25.CrossRef Aschoff P, Plathow C, Beyer T, Lichy MP, Erb G, Oksuz MO, Claussen CD, Pfannenberg C. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging. Eur J Nucl Med Mol Imaging. 2012;39(2):316–25.CrossRef
Metadata
Title
Comparison of conventional and Si-photomultiplier-based PET systems for image quality and diagnostic performance
Authors
Jenny Oddstig
Sigrid Leide Svegborn
Helen Almquist
Ulrika Bitzén
Sabine Garpered
Fredrik Hedeer
Cecilia Hindorf
Jonas Jögi
Lena Jönsson
David Minarik
Richard Petersson
Annika Welinder
Per Wollmer
Elin Trägårdh
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0377-6

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue