Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Computed Tomography | Research article

Value of virtual monochromatic spectral image of dual-layer spectral detector CT with noise reduction algorithm for image quality improvement in obese simulated body phantom

Authors: Hyo-Jin Kang, Jeong Min Lee, Sang Min Lee, Hyun Kyung Yang, Ri Hyeon Kim, Ju Gang Nam, Aruna Karnawat, Joon Koo Han

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

Dual-layer spectral detector CT (SDCT) may provide several theoretical advantages over pre-existing DECT approaches in terms of adjustment-free sampling number and dose modulation, beam hardening correction, and production spectral images by post-processing. In addition, by adopting noise reduction algorithm, high contrast resolution was expected even in low keV level. We surmised that this improvement would be beneficial to obese people. Therefore, our aim of study is to compare image quality of virtual monochromatic spectral images (VMI) and polychromatic images reconstructed from SDCT with different body size and radiation dose using anthropomorphic liver phantom.

Methods

One small and one large size of body phantoms, each containing eight (four high- and four low-contrast) simulated focal liver lesions (FLLs) were scanned by SDCT (at 120 kVp) using different Dose Right Indexes (DRIs). VMI were reconstructed from spectral base images from 40 keV to 200 keV. Hybrid iterative reconstruction (iDose4) was used for polychromatic image reconstruction. Image noise and contrast to noise ratio (CNR) were compared. Five radiologists independently rated lesion conspicuity, diagnostic acceptability and subjective noise level in every image sets, and determined optimal keV level in VMI.

Results

Compare with conventional polychromatic images, VMI showed superior CNR at low keV level regardless of phantom size at every examined DRIs (Ps < 0.05). As body size increased, VMI had more gradual CNR decrease and noise increase than conventional polychromatic images. For low contrast FLLs in large phantom, lesion conspicuities at low radiation dose levels (DRI 16 and 19) were significantly increased in VMI (Ps < 0.05). Subjective image noise and diagnostic acceptabilities were significantly improved at VMI in both phantom size.

Conclusions

VMI of dual-layer spectral detector CT with noise reduction algorithm provides improved CNR, noise reduction, and better subjective image quality in imaging of obese simulated liver phantom compared with polychromatic images. This may hold promise for improving detection of liver lesions and improved imaging of obese patients.
Literature
1.
go back to reference Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42.PubMedCrossRef Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42.PubMedCrossRef
2.
go back to reference Darras KE, McLaughlin PD, Kang H, Black B, Walshe T, Chang SD, Harris AC, Nicolaou S. Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70keV maximizes mural enhancement in acute small bowel obstruction. Eur J Radiol. 2016;85(5):950–6.PubMedCrossRef Darras KE, McLaughlin PD, Kang H, Black B, Walshe T, Chang SD, Harris AC, Nicolaou S. Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70keV maximizes mural enhancement in acute small bowel obstruction. Eur J Radiol. 2016;85(5):950–6.PubMedCrossRef
3.
go back to reference Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259(1):257–62.PubMedCrossRef Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259(1):257–62.PubMedCrossRef
4.
go back to reference Mileto A, Nelson RC, Samei E, Choudhury KR, Jaffe TA, Wilson JM, Marin D. Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. Am J Roentgenol. 2014;203(6):1257–64.CrossRef Mileto A, Nelson RC, Samei E, Choudhury KR, Jaffe TA, Wilson JM, Marin D. Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. Am J Roentgenol. 2014;203(6):1257–64.CrossRef
5.
go back to reference Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. Radiographics. 2014;34(3):589–612.PubMedCrossRef Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. Radiographics. 2014;34(3):589–612.PubMedCrossRef
8.
go back to reference Heye T, Nelson RC, Ho LM, Marin D, Boll DT. Dual-energy CT applications in the abdomen. AJR Am J Roentgenol. 2012;199(5 Suppl):S64–70.PubMedCrossRef Heye T, Nelson RC, Ho LM, Marin D, Boll DT. Dual-energy CT applications in the abdomen. AJR Am J Roentgenol. 2012;199(5 Suppl):S64–70.PubMedCrossRef
9.
10.
go back to reference Yu L, Leng S, McCollough CH. Dual-energy CT–based monochromatic imaging. Am J Roentgenol. 2012;199(5_supplement):S9–S15.CrossRef Yu L, Leng S, McCollough CH. Dual-energy CT–based monochromatic imaging. Am J Roentgenol. 2012;199(5_supplement):S9–S15.CrossRef
11.
go back to reference Albrecht MH, Scholtz JE, Husers K, Beeres M, Bucher AM, Kaup M, Martin SS, Fischer S, Bodelle B, Bauer RW, et al. Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast. Eur Radiol. 2016;26(6):1863–70.CrossRefPubMed Albrecht MH, Scholtz JE, Husers K, Beeres M, Bucher AM, Kaup M, Martin SS, Fischer S, Bodelle B, Bauer RW, et al. Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast. Eur Radiol. 2016;26(6):1863–70.CrossRefPubMed
12.
go back to reference Maass C, Baer M, Kachelriess M. Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med Phys. 2009;36(8):3818–29.PubMedCrossRef Maass C, Baer M, Kachelriess M. Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med Phys. 2009;36(8):3818–29.PubMedCrossRef
13.
go back to reference Lv P, Lin XZ, Chen K, Gao J. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol. 2012;22(10):2117–24.CrossRefPubMed Lv P, Lin XZ, Chen K, Gao J. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol. 2012;22(10):2117–24.CrossRefPubMed
14.
go back to reference Kim KS, Lee JM, Kim SH, Kim KW, Kim SJ, Cho SH, Han JK, Choi BI. Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies. Investig Radiol. 2010;45(3):149–57.CrossRef Kim KS, Lee JM, Kim SH, Kim KW, Kim SJ, Cho SH, Han JK, Choi BI. Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies. Investig Radiol. 2010;45(3):149–57.CrossRef
15.
go back to reference Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Investig Radiol. 2014;49(9):586–92.CrossRef Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Investig Radiol. 2014;49(9):586–92.CrossRef
16.
go back to reference Sun H, Qiu S, Lou S, Liu J, Li C, Jiang G. A correction method for nonlinear artifacts in CT imaging. In: Engineering in Medicine and Biology Society, 2004 IEMBS'04 26th Annual International Conference of the IEEE: 2004: IEEE; 2004. p. 1290–3. Sun H, Qiu S, Lou S, Liu J, Li C, Jiang G. A correction method for nonlinear artifacts in CT imaging. In: Engineering in Medicine and Biology Society, 2004 IEMBS'04 26th Annual International Conference of the IEEE: 2004: IEEE; 2004. p. 1290–3.
17.
go back to reference Brooks RA, Di Chiro G. Beam hardening in x-ray reconstructive tomography. Phys Med Biol. 1976;21(3):390.PubMedCrossRef Brooks RA, Di Chiro G. Beam hardening in x-ray reconstructive tomography. Phys Med Biol. 1976;21(3):390.PubMedCrossRef
18.
go back to reference Menvielle N, Goussard Y, Orban D, Soulez G. Reduction of beam-hardening artifacts in X-ray CT. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference: 2005: IEEE; 2005. p. 1865–8. Menvielle N, Goussard Y, Orban D, Soulez G. Reduction of beam-hardening artifacts in X-ray CT. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference: 2005: IEEE; 2005. p. 1865–8.
19.
go back to reference Jacobsen M, Wood C, Cody D. WE-FG-207B-08: dual-energy CT iodine accuracy across vendors and platforms. Med Phys. 2016;43(6):3835–6.CrossRef Jacobsen M, Wood C, Cody D. WE-FG-207B-08: dual-energy CT iodine accuracy across vendors and platforms. Med Phys. 2016;43(6):3835–6.CrossRef
20.
go back to reference Romman Z, Uman I, Yagil Y, Finizi D, Wainer N, Milstein D: Detector technology in simultaneous spectral imaging. Philips White Paper, available online 2015, 29. Romman Z, Uman I, Yagil Y, Finizi D, Wainer N, Milstein D: Detector technology in simultaneous spectral imaging. Philips White Paper, available online 2015, 29.
21.
go back to reference Ozguner O, Dhanantwari A, Halliburton S, Wen G, Utrup S, Jordan D. SU-G-IeP2-09: iodine imaging at spectral CT with a dual-layer detector. Med Phys. 2016;43(6):3657.CrossRef Ozguner O, Dhanantwari A, Halliburton S, Wen G, Utrup S, Jordan D. SU-G-IeP2-09: iodine imaging at spectral CT with a dual-layer detector. Med Phys. 2016;43(6):3657.CrossRef
22.
go back to reference Duan X, Arbique G, Guild J, Yagil Y, Anderson J. WE-FG-207B-12: quantitative evaluation of a spectral CT scanner in a phantom study: results of spectral reconstructions. Med Phys. 2016;43(6):3836–7.CrossRef Duan X, Arbique G, Guild J, Yagil Y, Anderson J. WE-FG-207B-12: quantitative evaluation of a spectral CT scanner in a phantom study: results of spectral reconstructions. Med Phys. 2016;43(6):3836–7.CrossRef
23.
go back to reference Jacobsen M, Wood C, Cody D. WE-FG-207B-10: dual-energy CT monochromatic image consistency across vendors and platforms. Med Phys. 2016;43(6):3836.CrossRef Jacobsen M, Wood C, Cody D. WE-FG-207B-10: dual-energy CT monochromatic image consistency across vendors and platforms. Med Phys. 2016;43(6):3836.CrossRef
24.
go back to reference Sellerer T, Ehn S, Hammel J, Noel PB, Fingerle AA, Patino M, Parakh A, Sahani DV, Zeiter S, Holz JA. Dual-energy CT. A phantom comparison of different platforms for abdominal imaging. Eur Radiol. 2018;28(7):2745–55.CrossRefPubMed Sellerer T, Ehn S, Hammel J, Noel PB, Fingerle AA, Patino M, Parakh A, Sahani DV, Zeiter S, Holz JA. Dual-energy CT. A phantom comparison of different platforms for abdominal imaging. Eur Radiol. 2018;28(7):2745–55.CrossRefPubMed
25.
go back to reference Ehn S, Sellerer T, Muenzel D, Fingerle A, Kopp F, Duda M, Mei K, Renger B, Herzen J, Dangelmaier J. Assessment of quantification accuracy and image quality of a full-body dual-layer spectral CT system. J Appl Clin Med Phys. 2018;19(1):204–17.CrossRefPubMed Ehn S, Sellerer T, Muenzel D, Fingerle A, Kopp F, Duda M, Mei K, Renger B, Herzen J, Dangelmaier J. Assessment of quantification accuracy and image quality of a full-body dual-layer spectral CT system. J Appl Clin Med Phys. 2018;19(1):204–17.CrossRefPubMed
26.
go back to reference Yoon JH, Lee JM, Yu MH, Baek JH, Jeon JH, Hur BY, Dhanantwari A, Chung SY, Han JK, Choi BI. Comparison of iterative model–based reconstruction versus conventional filtered Back projection and hybrid iterative reconstruction techniques: lesion conspicuity and influence of body size in anthropomorphic liver phantoms. J Comput Assist Tomogr. 2014;38(6):859–68.PubMedCrossRef Yoon JH, Lee JM, Yu MH, Baek JH, Jeon JH, Hur BY, Dhanantwari A, Chung SY, Han JK, Choi BI. Comparison of iterative model–based reconstruction versus conventional filtered Back projection and hybrid iterative reconstruction techniques: lesion conspicuity and influence of body size in anthropomorphic liver phantoms. J Comput Assist Tomogr. 2014;38(6):859–68.PubMedCrossRef
27.
go back to reference Ananthakrishnan L, Rajiah P, Ahn R, Rassouli N, Xi Y, Soesbe TC, Lewis MA, Lenkinski RE, Leyendecker JR, Abbara S. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT. Abdom Radiol. 2017;42(3):702.CrossRef Ananthakrishnan L, Rajiah P, Ahn R, Rassouli N, Xi Y, Soesbe TC, Lewis MA, Lenkinski RE, Leyendecker JR, Abbara S. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT. Abdom Radiol. 2017;42(3):702.CrossRef
28.
go back to reference Park HJ, Lee JM, Park SB, Lee JB, Jeong YK, Yoon JH. Comparison of knowledge-based iterative model reconstruction and hybrid reconstruction techniques for liver CT evaluation of Hypervascular hepatocellular carcinoma. J Comput Assist Tomogr. 2016;40(6):863–71.PubMedCrossRef Park HJ, Lee JM, Park SB, Lee JB, Jeong YK, Yoon JH. Comparison of knowledge-based iterative model reconstruction and hybrid reconstruction techniques for liver CT evaluation of Hypervascular hepatocellular carcinoma. J Comput Assist Tomogr. 2016;40(6):863–71.PubMedCrossRef
30.
go back to reference Pickhardt PJ, Lubner MG, Kim DH, Tang J, Ruma JA, del Rio AM, Chen G-H. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol. 2012;199(6):1266.PubMedPubMedCentralCrossRef Pickhardt PJ, Lubner MG, Kim DH, Tang J, Ruma JA, del Rio AM, Chen G-H. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol. 2012;199(6):1266.PubMedPubMedCentralCrossRef
31.
go back to reference Yu MH, Lee JM, Yoon J-H, Baek JH, Han JK, Choi B-I, Flohr TG. Low tube voltage intermediate tube current liver MDCT: sinogram-affirmed iterative reconstruction algorithm for detection of hypervascular hepatocellular carcinoma. Am J Roentgenol. 2013;201(1):23–32.CrossRef Yu MH, Lee JM, Yoon J-H, Baek JH, Han JK, Choi B-I, Flohr TG. Low tube voltage intermediate tube current liver MDCT: sinogram-affirmed iterative reconstruction algorithm for detection of hypervascular hepatocellular carcinoma. Am J Roentgenol. 2013;201(1):23–32.CrossRef
32.
go back to reference Yamada Y, Jinzaki M, Hosokawa T, Tanami Y, Abe T, Kuribayashi S. Abdominal CT: an intra-individual comparison between virtual monochromatic spectral and polychromatic 120-kVp images obtained during the same examination. Eur J Radiol. 2014;83(10):1715–22.CrossRefPubMed Yamada Y, Jinzaki M, Hosokawa T, Tanami Y, Abe T, Kuribayashi S. Abdominal CT: an intra-individual comparison between virtual monochromatic spectral and polychromatic 120-kVp images obtained during the same examination. Eur J Radiol. 2014;83(10):1715–22.CrossRefPubMed
33.
go back to reference Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371–9.PubMedPubMedCentralCrossRef Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371–9.PubMedPubMedCentralCrossRef
34.
go back to reference Leng S, Yu L, Fletcher JG, McCollough CH. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual Monoenergetic dual-energy CT. Radiology. 2015;276(2):562–70.PubMedCrossRef Leng S, Yu L, Fletcher JG, McCollough CH. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual Monoenergetic dual-energy CT. Radiology. 2015;276(2):562–70.PubMedCrossRef
35.
go back to reference Caruso D, De Cecco CN, Schoepf UJ, Schaefer AR, Leland PW, Johnson D, Laghi A, Hardie AD. Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging. 2017;41:118–24.CrossRefPubMed Caruso D, De Cecco CN, Schoepf UJ, Schaefer AR, Leland PW, Johnson D, Laghi A, Hardie AD. Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging. 2017;41:118–24.CrossRefPubMed
36.
go back to reference Husarik DB, Gordic S, Desbiolles L, Krauss B, Leschka S, Wildermuth S, Alkadhi H. Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: ex-vivo and patient experience in various body sizes. Investig Radiol. 2015;50(10):695–702.CrossRef Husarik DB, Gordic S, Desbiolles L, Krauss B, Leschka S, Wildermuth S, Alkadhi H. Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: ex-vivo and patient experience in various body sizes. Investig Radiol. 2015;50(10):695–702.CrossRef
37.
go back to reference Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys. 2011;38(3):1178–88.CrossRefPubMed Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys. 2011;38(3):1178–88.CrossRefPubMed
38.
go back to reference Cui Y, Gao SY, Wang ZL, Li XT, Sun YS, Tang L, Zhang XP. Which should be the routine cross-sectional reconstruction mode in spectral CT imaging: monochromatic or polychromatic? Br J Radiol. 2012;85(1018):e887–90.PubMedPubMedCentralCrossRef Cui Y, Gao SY, Wang ZL, Li XT, Sun YS, Tang L, Zhang XP. Which should be the routine cross-sectional reconstruction mode in spectral CT imaging: monochromatic or polychromatic? Br J Radiol. 2012;85(1018):e887–90.PubMedPubMedCentralCrossRef
39.
go back to reference Chen Y, Liu J, Hu Y, Yang J, Shi L, Shu H, Gui Z, Coatrieux G, Luo L. Discriminative feature representation: an effective postprocessing solution to low dose CT imaging. Phys Med Biol. 2017;62(6):2103.PubMedCrossRef Chen Y, Liu J, Hu Y, Yang J, Shi L, Shu H, Gui Z, Coatrieux G, Luo L. Discriminative feature representation: an effective postprocessing solution to low dose CT imaging. Phys Med Biol. 2017;62(6):2103.PubMedCrossRef
40.
go back to reference Liu J, Hu Y, Yang J, Chen Y, Shu H, Luo L, Feng Q, Gui Z, Coatrieux G. 3D feature constrained reconstruction for low-dose CT imaging. IEEE Transactions on Circuits and Systems for Video Technology. 2018;28(5):1232–47.CrossRef Liu J, Hu Y, Yang J, Chen Y, Shu H, Luo L, Feng Q, Gui Z, Coatrieux G. 3D feature constrained reconstruction for low-dose CT imaging. IEEE Transactions on Circuits and Systems for Video Technology. 2018;28(5):1232–47.CrossRef
41.
go back to reference Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux J-L, Chen W. Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging. 2014;33(12):2271–92.PubMedCrossRef Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux J-L, Chen W. Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging. 2014;33(12):2271–92.PubMedCrossRef
42.
go back to reference Mileto A, Barina A, Marin D, Stinnett SS, Roy Choudhury K, Wilson JM, Nelson RC. Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology. 2016;279(1):269–77.PubMedCrossRef Mileto A, Barina A, Marin D, Stinnett SS, Roy Choudhury K, Wilson JM, Nelson RC. Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology. 2016;279(1):269–77.PubMedCrossRef
43.
go back to reference Robinson E, Babb J, Chandarana H, Macari M. Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Investig Radiol. 2010;45(7):413–8. Robinson E, Babb J, Chandarana H, Macari M. Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Investig Radiol. 2010;45(7):413–8.
44.
go back to reference Hokamp NG, Obmann V, Kessner R, Laukamp K, Persigehl T, Haneder S, Ramaiya N. Improved visualization of hypodense liver lesions in virtual monoenergetic images from spectral detector CT: proof of concept in a 3D-printed phantom and evaluation in 74 patients. Eur J Radiol. 2018;109:114–23.CrossRef Hokamp NG, Obmann V, Kessner R, Laukamp K, Persigehl T, Haneder S, Ramaiya N. Improved visualization of hypodense liver lesions in virtual monoenergetic images from spectral detector CT: proof of concept in a 3D-printed phantom and evaluation in 74 patients. Eur J Radiol. 2018;109:114–23.CrossRef
Metadata
Title
Value of virtual monochromatic spectral image of dual-layer spectral detector CT with noise reduction algorithm for image quality improvement in obese simulated body phantom
Authors
Hyo-Jin Kang
Jeong Min Lee
Sang Min Lee
Hyun Kyung Yang
Ri Hyeon Kim
Ju Gang Nam
Aruna Karnawat
Joon Koo Han
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0367-8

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue