Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Computed Tomography | Research article

Velopharyngeal closure analysis using four-dimensional computed tomography: a pilot study of healthy volunteers and adult patients with cleft palate

Authors: Yoshikazu Kobayashi, Daisuke Kanamori, Naoko Fujii, Yumi Kataoka, Emiko Hirai, Satoshi Yoshioka, Koji Satoh, Hiroshi Toyama, Kensei Naito, Koichiro Matsuo

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

Nasopharyngoscopy is a common method to evaluate velopharyngeal closure in patients with cleft palate. However, insertion of a fiberoptic nasopharyngoscope causes discomfort in patients. The aim of this study was to estimate the reliability of short-time exposure images obtained using 320-row area detector computed tomography (320-ADCT) as a novel evaluation method for the assessment of velopharyngeal function.

Methods

We evaluated five healthy adult volunteers and five postoperative adult patients with cleft palate. During a 3.3-s imaging exposure, the participants were asked to perform two tasks: nasal inspiration and subsequent oral expiration through a catheter into a water-filled cup. The movement of the velopharyngeal structures was recorded during each examination, and the presence of velopharyngeal insufficiency (VPI) and velopharyngeal closure (VPC) patterns were estimated. If VPI was detected, the cross-sectional area was also calculated. Cohen’s kappa and weighted kappa coefficients were used to evaluate the concordance of nasopharyngoscopy and 320-ADCT evaluation.

Results

Speech pathology evaluation did not reveal hypernasality in any study participant. Micro-VPI was detected by nasopharyngoscopy in one healthy volunteer and two patients. 320-ADCT detected micro-VPI in two more patients. The cross-sectional area of the VPI in these subjects ranged from 2.53 to 16.28 mm2. Nasopharyngoscopy and 320-ADCT were concordant in detecting VPI in eight participants (κ = 0.6) and in assessing VPC patterns in nine (κ = 0.82). Moreover, images obtained using 320-ADCT allowed for reduced dead angle and, thus, easy detection of micro-VPI and Passavant’s ridges.

Conclusion

Although the radiation exposure cannot be ignored, our novel evaluation method using 320-ADCT enables more detailed evaluation of VPC than nasopharyngoscopy. Future studies should investigate the relationship between 320-ADCT findings and speech pathology evaluations.
Literature
1.
go back to reference Rajan S, Kurien M, Gupta AK, Mathews SS, Albert RR, Tychicus D. Velopharyngeal incompetence in patients with cleft palate, flexible video pharyngoscopy and perceptual speech assessment: a correlational pilot study. J Laryngol Otol. 2014;128(11):986–90.CrossRef Rajan S, Kurien M, Gupta AK, Mathews SS, Albert RR, Tychicus D. Velopharyngeal incompetence in patients with cleft palate, flexible video pharyngoscopy and perceptual speech assessment: a correlational pilot study. J Laryngol Otol. 2014;128(11):986–90.CrossRef
2.
go back to reference Kobayashi Y, Satoh K, Kanamori D, Mizutani H, Fujii N, Aizawa T, Toyama H, Yamada H. Evaluating the exposure dose of 320-row area detector computed tomography and its reliability in the measurement of bone defect in alveolar cleft. J Oral Maxillofac Surg Med Pathol. 2017;29(4):350–7.CrossRef Kobayashi Y, Satoh K, Kanamori D, Mizutani H, Fujii N, Aizawa T, Toyama H, Yamada H. Evaluating the exposure dose of 320-row area detector computed tomography and its reliability in the measurement of bone defect in alveolar cleft. J Oral Maxillofac Surg Med Pathol. 2017;29(4):350–7.CrossRef
3.
go back to reference Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging. 2008;24(5):535–46.CrossRef Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging. 2008;24(5):535–46.CrossRef
4.
go back to reference Fujii N, Inamoto Y, Saitoh E, Baba M, Okada S, Yoshioka S, Nakai T, Ida Y, Katada K, Palmer JB. Evaluation of swallowing using 320-detector-row multislice CT. Part I: single- and multiphase volume scanning for three-dimensional morphological and kinematic analysis. Dysphagi. 2011;26(2):99–107.CrossRef Fujii N, Inamoto Y, Saitoh E, Baba M, Okada S, Yoshioka S, Nakai T, Ida Y, Katada K, Palmer JB. Evaluation of swallowing using 320-detector-row multislice CT. Part I: single- and multiphase volume scanning for three-dimensional morphological and kinematic analysis. Dysphagi. 2011;26(2):99–107.CrossRef
5.
go back to reference Inamoto Y, Fujii N, Saitoh E, Baba M, Okada S, Katada K, Ozeki Y, Kanamori D, Palmer JB. Evaluation of swallowing using 320-detector-row multislice CT. Part II: kinematic analysis of laryngeal closure during normal swallowing. Dysphagia. 2011;26(3):209–17.CrossRef Inamoto Y, Fujii N, Saitoh E, Baba M, Okada S, Katada K, Ozeki Y, Kanamori D, Palmer JB. Evaluation of swallowing using 320-detector-row multislice CT. Part II: kinematic analysis of laryngeal closure during normal swallowing. Dysphagia. 2011;26(3):209–17.CrossRef
6.
go back to reference Hayakawa M, Tanaka T, Sadato A, Adachi K, Ito K, Hattori N, Omi T, Oheda M, Katada K, Murayama K, Kato Y, Hirose Y. Detection of pulsation in unruptured cerebral aneurysms by ECG-gated 3D-CT angiography (4D-CTA) with 320-row area detector CT (ADCT) and follow-up evaluation results: assessment based on heart rate at the time of scanning. Clin Neuroradiol. 2014;24(2):145–50.CrossRef Hayakawa M, Tanaka T, Sadato A, Adachi K, Ito K, Hattori N, Omi T, Oheda M, Katada K, Murayama K, Kato Y, Hirose Y. Detection of pulsation in unruptured cerebral aneurysms by ECG-gated 3D-CT angiography (4D-CTA) with 320-row area detector CT (ADCT) and follow-up evaluation results: assessment based on heart rate at the time of scanning. Clin Neuroradiol. 2014;24(2):145–50.CrossRef
7.
go back to reference Klingebiel R, Siebert E, Diekmann S, Wiener E, Masuhr F, Wagner M, Bauknecht HC, Dewey M, Bohner G. 4-D imaging in cerebrovascular disorders by using 320-slice CT: feasibility and preliminary clinical experience. Acad Radiol. 2009;16(2):123–9.CrossRef Klingebiel R, Siebert E, Diekmann S, Wiener E, Masuhr F, Wagner M, Bauknecht HC, Dewey M, Bohner G. 4-D imaging in cerebrovascular disorders by using 320-slice CT: feasibility and preliminary clinical experience. Acad Radiol. 2009;16(2):123–9.CrossRef
8.
go back to reference Sakamoto Y, Soga S, Jinzaki M, Yamada Y, Ogata H, Kishi K. Evaluation of velopharyngeal closure by 4D imaging using 320-detector-row computed tomography. J Plast Reconstr Aesthet Surg. 2015;68(4):479–84.CrossRef Sakamoto Y, Soga S, Jinzaki M, Yamada Y, Ogata H, Kishi K. Evaluation of velopharyngeal closure by 4D imaging using 320-detector-row computed tomography. J Plast Reconstr Aesthet Surg. 2015;68(4):479–84.CrossRef
9.
go back to reference Kanamori D, Kagaya H, Fujii N, Inamoto Y, Nakayama E, Suzuki S, Mizutani H, Okada S, Katada K, Saitoh E. Examination of the distance measurement error and exposed dose when using a 320-row area detector CT: a comparison with videofluoroscopic examination of swallowing. Jpn J Compr Rehabil Sci. 2012;2(2011):18–23. Kanamori D, Kagaya H, Fujii N, Inamoto Y, Nakayama E, Suzuki S, Mizutani H, Okada S, Katada K, Saitoh E. Examination of the distance measurement error and exposed dose when using a 320-row area detector CT: a comparison with videofluoroscopic examination of swallowing. Jpn J Compr Rehabil Sci. 2012;2(2011):18–23.
10.
go back to reference Croft CB, Shprintzen RJ, Rakoff SJ. Patterns of velopharyngeal valving in normal and cleft palate subjects: a multi-view videofluoroscopic and nasendoscopic study. Laryngoscope. 1981;91(2):265–71.CrossRef Croft CB, Shprintzen RJ, Rakoff SJ. Patterns of velopharyngeal valving in normal and cleft palate subjects: a multi-view videofluoroscopic and nasendoscopic study. Laryngoscope. 1981;91(2):265–71.CrossRef
11.
go back to reference Honjo I, Mitoma T, Ushiro K, Kawano M. Evaluation of velopharyngeal closure by CT scan and endoscopy. Plast Reconstr Surg. 1984;74(5):620–7.CrossRef Honjo I, Mitoma T, Ushiro K, Kawano M. Evaluation of velopharyngeal closure by CT scan and endoscopy. Plast Reconstr Surg. 1984;74(5):620–7.CrossRef
12.
go back to reference Perry JL, Kuehn DP, Sutton BP, Fang X. Velopharyngeal structural and functional assessment of speech in young children using dynamic magnetic resonance imaging. Cleft Palate Craniofac J. 2017;54(4):408–22.CrossRef Perry JL, Kuehn DP, Sutton BP, Fang X. Velopharyngeal structural and functional assessment of speech in young children using dynamic magnetic resonance imaging. Cleft Palate Craniofac J. 2017;54(4):408–22.CrossRef
13.
go back to reference Perry JL, Mason K, Sutton BP, Kuehn DP. Can dynamic MRI be used to accurately identify velopharyngeal closure patterns? Cleft Palate Craniofac J. 2018;55(4):499–507.CrossRef Perry JL, Mason K, Sutton BP, Kuehn DP. Can dynamic MRI be used to accurately identify velopharyngeal closure patterns? Cleft Palate Craniofac J. 2018;55(4):499–507.CrossRef
14.
go back to reference Valentin J. Managing patient dose in multi-detector computed tomography (MDCT). ICRP publication 102. Ann ICRP. 2007;37(1):1–79 iii.CrossRef Valentin J. Managing patient dose in multi-detector computed tomography (MDCT). ICRP publication 102. Ann ICRP. 2007;37(1):1–79 iii.CrossRef
Metadata
Title
Velopharyngeal closure analysis using four-dimensional computed tomography: a pilot study of healthy volunteers and adult patients with cleft palate
Authors
Yoshikazu Kobayashi
Daisuke Kanamori
Naoko Fujii
Yumi Kataoka
Emiko Hirai
Satoshi Yoshioka
Koji Satoh
Hiroshi Toyama
Kensei Naito
Koichiro Matsuo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0350-4

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue