Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Computed Tomography | Research article

Cardiac left ventricular myocardial tissue density, evaluated by computed tomography and autopsy

Authors: Alexandra G. Gheorghe, Andreas Fuchs, Christina Jacobsen, Klaus F. Kofoed, Rasmus Møgelvang, Niels Lynnerup, Jytte Banner

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

Left ventricular mass (LVM) is an independent risk factor for the prediction of cardiac events. Its assessment is a clinically important diagnostic procedure in cardiology and may be performed by Computed Tomography (CT). The aim of this study was to assess the correlation between the cardiac left ventricular shell volume (LVShV) determined by postmortem Computed Tomography (PMCT) and the anatomic LVM obtained at autopsy and to calculate the myocardial tissue density.

Methods

A total of 109 deceased individuals were examined with a 64-slice CT scanner and LVShV was determined. At autopsy, the left ventricle was dissected and weighted. The correlation between LVShV and the anatomic LVM was analysed. Asymmetric left ventricular (LV) hypertrophy was recorded. Inter-observer variability was evaluated, and a density value for myocardial tissue was calculated.

Results

The mean age of the deceased was 55 ± 16 years, and 58% was men. We found 30 cases of asymmetric LV hypertrophy. A highly positive correlation existed between LVShV and anatomic LVM (r = 0.857; p < 0.0001), regardless of hypertrophy, asymmetric hypertrophy and gender. The mean difference in the inter-observer variability for LVShV assessment was - 4.4 ml (95% CI: -26.4; 17.6). A linear regression analysis was performed, resulting in a value of 1.265 g/ml for myocardial tissue density. Applying the hitherto used myocardial tissue density of 1.055 g/ml underestimated the anatomic LVM by 18.1% (p < 0.0001).

Conclusion

PMCT is a helpful tool for the assessment of LVM, and LVShV is highly correlated with LVM as assessed by subsequent autopsy. The correlation between the two was independent of gender, hypertrophy and LV asymmetric hypertrophy. We found a higher myocardial tissue density of 1.265 g/ml compared to previous studies. We show that PMCT combined with autopsy may contribute not only to anatomical but also clinical knowledge.
Literature
4.
go back to reference Celebi AS, Yalcin H, Yalcin F. Current cardiac imaging techniques for detection of left ventricular mass. Cardiovasc Ultrasound. 2010;8:19.CrossRef Celebi AS, Yalcin H, Yalcin F. Current cardiac imaging techniques for detection of left ventricular mass. Cardiovasc Ultrasound. 2010;8:19.CrossRef
6.
go back to reference Emanuel R, Marcomichelakis J, Withers R, O’Brien K. Asymmetric septal hypertrophy and hypertrophic cardiomyopathy. Br Heart J. 1983;49:309.CrossRef Emanuel R, Marcomichelakis J, Withers R, O’Brien K. Asymmetric septal hypertrophy and hypertrophic cardiomyopathy. Br Heart J. 1983;49:309.CrossRef
7.
go back to reference Losi M-A, Nistri S, Galderisi M, Betocchi S, Cecchi F, Olivotto I, et al. Echocardiography in patients with hypertrophic cardiomyopathy: usefulness of old and new techniques in the diagnosis and pathophysiological assessment. Cardiovasc Ultrasound. 2010;8:7.CrossRef Losi M-A, Nistri S, Galderisi M, Betocchi S, Cecchi F, Olivotto I, et al. Echocardiography in patients with hypertrophic cardiomyopathy: usefulness of old and new techniques in the diagnosis and pathophysiological assessment. Cardiovasc Ultrasound. 2010;8:7.CrossRef
8.
go back to reference Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63. https://doi.org/10.1016/j.echo.2005.10.005.CrossRefPubMed Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63. https://​doi.​org/​10.​1016/​j.​echo.​2005.​10.​005.CrossRefPubMed
10.
go back to reference Fuchs A, Mejdahl MR, Kühl JT, Stisen ZR, Nilsson EJP, Køber LV, et al. Normal values of left ventricular mass and cardiac chamber volumes assessed by 320-detector computed tomography angiography in the Copenhagen general population study. Eur Heart J Cardiovasc Imaging. 2016;17:1009–17. https://doi.org/10.1093/ehjci/jev337.CrossRefPubMed Fuchs A, Mejdahl MR, Kühl JT, Stisen ZR, Nilsson EJP, Køber LV, et al. Normal values of left ventricular mass and cardiac chamber volumes assessed by 320-detector computed tomography angiography in the Copenhagen general population study. Eur Heart J Cardiovasc Imaging. 2016;17:1009–17. https://​doi.​org/​10.​1093/​ehjci/​jev337.CrossRefPubMed
11.
go back to reference Hindsø L, Fuchs A, Kühl JT, Nilsson EJP, Sigvardsen PE, Køber L, et al. Normal values of regional left ventricular myocardial thickness, mass and distribution-assessed by 320-detector computed tomography angiography in the Copenhagen general population study. Int J Card Imaging. 2017;33:421–9. https://doi.org/10.1007/s10554-016-1015-9.CrossRef Hindsø L, Fuchs A, Kühl JT, Nilsson EJP, Sigvardsen PE, Køber L, et al. Normal values of regional left ventricular myocardial thickness, mass and distribution-assessed by 320-detector computed tomography angiography in the Copenhagen general population study. Int J Card Imaging. 2017;33:421–9. https://​doi.​org/​10.​1007/​s10554-016-1015-9.CrossRef
12.
go back to reference Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.CrossRef Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.CrossRef
14.
go back to reference Masshoff W, Scheidt D, Reimers HF. Quantitative Bestimmung des Fett-und Myokardgewebes im Leichenherzen. Virchows Arch. 1967;342:184–9.CrossRef Masshoff W, Scheidt D, Reimers HF. Quantitative Bestimmung des Fett-und Myokardgewebes im Leichenherzen. Virchows Arch. 1967;342:184–9.CrossRef
16.
go back to reference Lakatta EG, Mitchell JH, Pomerance A, Rowe GG. Human aging: changes in structure and function. J Am Coll Cardiol. 1987;10:42A–7A.CrossRef Lakatta EG, Mitchell JH, Pomerance A, Rowe GG. Human aging: changes in structure and function. J Am Coll Cardiol. 1987;10:42A–7A.CrossRef
18.
go back to reference Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP. Tipton IH. Report of the Task Group on Reference Man. n.d.:112–7. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP. Tipton IH. Report of the Task Group on Reference Man. n.d.:112–7.
19.
go back to reference Bardeen CR. Determination of the size of the heart by means of the x-rays. Dev Dyn. 1918;23:423–87. Bardeen CR. Determination of the size of the heart by means of the x-rays. Dev Dyn. 1918;23:423–87.
21.
go back to reference Friedman CE. Heart volume, myocardial volume and total capacity of the heart cavities in certain chronic heart diseases; a clinic, roentgenologic and patho-anatomic investigation of the problem of cardiac hypertrophy and dilatation and amount of residual blood of the heart. Acta Medica Scand Suppl. 1951;257:1–100. Friedman CE. Heart volume, myocardial volume and total capacity of the heart cavities in certain chronic heart diseases; a clinic, roentgenologic and patho-anatomic investigation of the problem of cardiac hypertrophy and dilatation and amount of residual blood of the heart. Acta Medica Scand Suppl. 1951;257:1–100.
22.
go back to reference de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a Caucasoid population. Forensic Sci Int. 2001;119:149–54.CrossRef de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a Caucasoid population. Forensic Sci Int. 2001;119:149–54.CrossRef
23.
go back to reference Gandy SJ, Waugh SA, Nicholas RS, Simpson HJ, Milne W, Houston JG. Comparison of the reproducibility of quantitative cardiac left ventricular assessments in healthy volunteers using different MRI scanners: a multicenter simulation. J Magn Reson Imaging. 2008;28:359–65. https://doi.org/10.1002/jmri.21401.CrossRefPubMed Gandy SJ, Waugh SA, Nicholas RS, Simpson HJ, Milne W, Houston JG. Comparison of the reproducibility of quantitative cardiac left ventricular assessments in healthy volunteers using different MRI scanners: a multicenter simulation. J Magn Reson Imaging. 2008;28:359–65. https://​doi.​org/​10.​1002/​jmri.​21401.CrossRefPubMed
26.
go back to reference Basso C, Burke M, Fornes P, Gallagher PJ, De Gouveia RH, Sheppard M, et al. Guidelines for autopsy investigation of sudden cardiac death. Pathologica. 2010;102:391–404.PubMed Basso C, Burke M, Fornes P, Gallagher PJ, De Gouveia RH, Sheppard M, et al. Guidelines for autopsy investigation of sudden cardiac death. Pathologica. 2010;102:391–404.PubMed
27.
go back to reference Bove KE, Rowlands DT, Scott RC. Observations on the assessment of cardiac hypertrophy utilizing a chamber partition technique. Circulation. 1966;33:558–68.CrossRef Bove KE, Rowlands DT, Scott RC. Observations on the assessment of cardiac hypertrophy utilizing a chamber partition technique. Circulation. 1966;33:558–68.CrossRef
28.
go back to reference Lucena J, Garcia-Pavia P, Pulpon LA. Clinico-pathological atlas of cardiovascular diseases. vol. 2015. Springer International Publishing, Switzerland. 362 pages. page 210-215. ISBN 13:978-3319111452. Lucena J, Garcia-Pavia P, Pulpon LA. Clinico-pathological atlas of cardiovascular diseases. vol. 2015. Springer International Publishing, Switzerland. 362 pages. page 210-215. ISBN 13:978-3319111452.
29.
go back to reference Schiller NB, Skiôldebrand CG, Schiller EJ, Mavroudis CC, Silverman NH, Rahimtoola SH, et al. Canine left ventricular mass estimation by two-dimensional echocardiography. Circulation. 1983;68:210–6.CrossRef Schiller NB, Skiôldebrand CG, Schiller EJ, Mavroudis CC, Silverman NH, Rahimtoola SH, et al. Canine left ventricular mass estimation by two-dimensional echocardiography. Circulation. 1983;68:210–6.CrossRef
30.
go back to reference Manning WJ, Wei JY, Fossel ET, Burstein D. Measurement of left ventricular mass in rats using electrocardiogram-gated magnetic resonance imaging. Am J Phys Heart Circ Phys. 1990;258:H1181–6. Manning WJ, Wei JY, Fossel ET, Burstein D. Measurement of left ventricular mass in rats using electrocardiogram-gated magnetic resonance imaging. Am J Phys Heart Circ Phys. 1990;258:H1181–6.
31.
go back to reference Wyatt HL, Heng MK, Meerbaum S, Hestenes JD, Cobo JM, Davidson RM, et al. Cross-sectional echocardiography. I. Analysis of mathematic models for quantifying mass of the left ventricle in dogs. Circulation. 1979;60:1104–13.CrossRef Wyatt HL, Heng MK, Meerbaum S, Hestenes JD, Cobo JM, Davidson RM, et al. Cross-sectional echocardiography. I. Analysis of mathematic models for quantifying mass of the left ventricle in dogs. Circulation. 1979;60:1104–13.CrossRef
34.
go back to reference Dykun I, Mahabadi AA, Lehmann N, Bauer M, Moebus S, Jöckel K-H, et al. Left ventricle size quantification using non-contrast-enhanced cardiac computed tomography--association with cardiovascular risk factors and coronary artery calcium score in the general population: the Heinz Nixdorf recall study. Acta Radiol. 2015;56:933–42. https://doi.org/10.1177/0284185114542996.CrossRefPubMed Dykun I, Mahabadi AA, Lehmann N, Bauer M, Moebus S, Jöckel K-H, et al. Left ventricle size quantification using non-contrast-enhanced cardiac computed tomography--association with cardiovascular risk factors and coronary artery calcium score in the general population: the Heinz Nixdorf recall study. Acta Radiol. 2015;56:933–42. https://​doi.​org/​10.​1177/​0284185114542996​.CrossRefPubMed
36.
go back to reference Penttilä A, Laiho K. Autolytic changes in blood cells of human cadavers. II. Morphological studies. Forensic Sci Int. 1981;17:121–32.CrossRef Penttilä A, Laiho K. Autolytic changes in blood cells of human cadavers. II. Morphological studies. Forensic Sci Int. 1981;17:121–32.CrossRef
Metadata
Title
Cardiac left ventricular myocardial tissue density, evaluated by computed tomography and autopsy
Authors
Alexandra G. Gheorghe
Andreas Fuchs
Christina Jacobsen
Klaus F. Kofoed
Rasmus Møgelvang
Niels Lynnerup
Jytte Banner
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0326-4

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue