Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Research article

Coronary artery size and origin imaging in children: a comparative study of MRI and trans-thoracic echocardiography

Authors: Tarique Hussain, Sujeev Mathur, Sarah A. Peel, Israel Valverde, Karolina Bilska, Markus Henningsson, Rene M. Botnar, John Simpson, Gerald F. Greil

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

The purpose of this study was to see how coronary magnetic resonance angiography (CMRA) compared to echocardiography for the detection of coronary artery origins and to compare CMRA measurements for coronary dimensions in children with published echocardiographic reference values.

Methods

Enrolled patients underwent dual cardiac phase CMRA and echocardiography under the same anesthetic. Echocardiographic measurements of the right coronary artery (RCA), left anterior descending (LAD) and left main (LM) were made. CMRA dimensions were assessed manually at the same points as the echocardiographic measurements. The number of proximal LAD branches imaged was also recorded in order to give an estimate of distal coronary tree visualization.

Results

Fifty patients (24 boys, mean age 4.0 years (range 18 days to 18 years)) underwent dual-phase CMRA. Coronary origins were identified in 47/50 cases for CMRA (remaining 3 were infants aged 3, 9 and 11 months). In comparison, origins were identified in 41/50 cases for echo (remaining were all older children).
CMRA performed better than echocardiography in terms of distal visualization of the coronary tree (median 1 LAD branch vs. median 0; p = 0.001).
Bland-Altman plots show poor agreement between echocardiography and CMRA for coronary measurements. CMRA measurements did vary according to cardiac phase (systolic mean 1.90, s.d. 0.05 mm vs. diastolic mean 1.84, s.d. 0.05 mm; p = 0.002).

Conclusions

Dual-phase CMRA has an excellent (94 %) success rate for the detection of coronary origins in children. Newborn infants remain challenging and echocardiography remains the accepted imaging modality for this age group. Echocardiographic reference ranges are not applicable to CMRA measurements as agreement was poor between modalities. Future coronary reference values, using any imaging modality, should quote the phase in which it was measured.
Literature
1.
go back to reference Geva T, Kreutzer J. Diagnostic pathways for evaluation of congenital heart disease. In: Crawford MH, DiMarco JP, editors. Cardiology. London: Mosby International; 2001. p. 7–41. Geva T, Kreutzer J. Diagnostic pathways for evaluation of congenital heart disease. In: Crawford MH, DiMarco JP, editors. Cardiology. London: Mosby International; 2001. p. 7–41.
2.
go back to reference McCrindle BW, Li JS, Minich LL, Colan SD, Atz AM, Takahashi M, et al. Coronary artery involvement in children with Kawasaki disease: risk factors from analysis of serial normalized measurements. Circulation. 2007;116(2):174–9.CrossRefPubMed McCrindle BW, Li JS, Minich LL, Colan SD, Atz AM, Takahashi M, et al. Coronary artery involvement in children with Kawasaki disease: risk factors from analysis of serial normalized measurements. Circulation. 2007;116(2):174–9.CrossRefPubMed
3.
go back to reference Olivieri L, Arling B, Friberg M, Sable C. Coronary artery Z score regression equations and calculators derived from a large heterogeneous population of children undergoing echocardiography. J Am Soc Echocardiogr. 2009;22(2):159–64.CrossRefPubMed Olivieri L, Arling B, Friberg M, Sable C. Coronary artery Z score regression equations and calculators derived from a large heterogeneous population of children undergoing echocardiography. J Am Soc Echocardiogr. 2009;22(2):159–64.CrossRefPubMed
4.
go back to reference Greil GF, Stuber M, Botnar RM, Kissinger KV, Geva T, Newburger JW, et al. Coronary magnetic resonance angiography in adolescents and young adults with kawasaki disease. Circulation. 2002;105(8):908–11.CrossRefPubMed Greil GF, Stuber M, Botnar RM, Kissinger KV, Geva T, Newburger JW, et al. Coronary magnetic resonance angiography in adolescents and young adults with kawasaki disease. Circulation. 2002;105(8):908–11.CrossRefPubMed
5.
go back to reference Uribe S, Hussain T, Valverde I, Tejos C, Irarrazaval P, Fava M, et al. Congenital Heart Disease in Children: Coronary MR Angiography during Systole and Diastole with Dual Cardiac Phase Whole-Heart Imaging. Radiology. 2011;260(1):232–40.CrossRefPubMed Uribe S, Hussain T, Valverde I, Tejos C, Irarrazaval P, Fava M, et al. Congenital Heart Disease in Children: Coronary MR Angiography during Systole and Diastole with Dual Cardiac Phase Whole-Heart Imaging. Radiology. 2011;260(1):232–40.CrossRefPubMed
6.
go back to reference Beerbaum P, Sarikouch S, Laser KT, Greil G, Burchert W, Korperich H. Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging. 2009;29(2):320–7.CrossRefPubMed Beerbaum P, Sarikouch S, Laser KT, Greil G, Burchert W, Korperich H. Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging. 2009;29(2):320–7.CrossRefPubMed
7.
go back to reference Hussain T, Lossnitzer D, Bellsham-Revell H, Valverde I, Beerbaum P, Razavi R, et al. Three-dimensional dual-phase whole-heart MR imaging: clinical implications for congenital heart disease. Radiology. 2012;263(2):547–554.CrossRefPubMed Hussain T, Lossnitzer D, Bellsham-Revell H, Valverde I, Beerbaum P, Razavi R, et al. Three-dimensional dual-phase whole-heart MR imaging: clinical implications for congenital heart disease. Radiology. 2012;263(2):547–554.CrossRefPubMed
8.
go back to reference Uribe S, Tangchaoren T, Parish V, Wolf I, Razavi R, Greil G, et al. Volumetric Cardiac Quantification by Using 3D Dual-Phase Whole-Heart MR Imaging. Radiology. 2008;248(2):606–14.CrossRefPubMed Uribe S, Tangchaoren T, Parish V, Wolf I, Razavi R, Greil G, et al. Volumetric Cardiac Quantification by Using 3D Dual-Phase Whole-Heart MR Imaging. Radiology. 2008;248(2):606–14.CrossRefPubMed
9.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRefPubMed
10.
go back to reference Ustun A, Desai M, Abd-Elmoniem KZ, Schar M, Stuber M. Automated identification of minimal myocardial motion for improved image quality on MR angiography at 3 T. AJR Am J Roentgenol. 2007;188(3):W283–90.CrossRefPubMed Ustun A, Desai M, Abd-Elmoniem KZ, Schar M, Stuber M. Automated identification of minimal myocardial motion for improved image quality on MR angiography at 3 T. AJR Am J Roentgenol. 2007;188(3):W283–90.CrossRefPubMed
11.
go back to reference Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, Botnar RM. Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging. 2001;14(4):383–90.CrossRefPubMed Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, Botnar RM. Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging. 2001;14(4):383–90.CrossRefPubMed
12.
go back to reference Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young. Am Heart Assoc Circ. 2004;110(17):2747–71. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young. Am Heart Assoc Circ. 2004;110(17):2747–71.
13.
go back to reference Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med. 2001;46(5):848–54.CrossRefPubMed Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med. 2001;46(5):848–54.CrossRefPubMed
14.
go back to reference Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, et al. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011;259(1):240–7.CrossRefPubMed Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, et al. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011;259(1):240–7.CrossRefPubMed
15.
go back to reference Su JT, Chung T, Muthupillai R, Pignatelli RH, Kung GC, Diaz LK, et al. Usefulness of real-time navigator magnetic resonance imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol. 2005;95(5):679–82.CrossRefPubMed Su JT, Chung T, Muthupillai R, Pignatelli RH, Kung GC, Diaz LK, et al. Usefulness of real-time navigator magnetic resonance imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol. 2005;95(5):679–82.CrossRefPubMed
16.
go back to reference Attili A, Hensley AK, Jones FD, Grabham J, DiSessa TG. Echocardiography and coronary CT angiography imaging of variations in coronary anatomy and coronary abnormalities in athletic children: detection of coronary abnormalities that create a risk for sudden death. Echocardiography. 2013;30(2):225–33.CrossRefPubMed Attili A, Hensley AK, Jones FD, Grabham J, DiSessa TG. Echocardiography and coronary CT angiography imaging of variations in coronary anatomy and coronary abnormalities in athletic children: detection of coronary abnormalities that create a risk for sudden death. Echocardiography. 2013;30(2):225–33.CrossRefPubMed
17.
go back to reference Frommelt PC, Berger S, Pelech AN, Bergstrom S, Williamson JG. Prospective identification of anomalous origin of left coronary artery from the right sinus of valsalva using transthoracic echocardiography: importance of color Doppler flow mapping. Pediatr Cardiol. 2001;22(4):327–32.CrossRefPubMed Frommelt PC, Berger S, Pelech AN, Bergstrom S, Williamson JG. Prospective identification of anomalous origin of left coronary artery from the right sinus of valsalva using transthoracic echocardiography: importance of color Doppler flow mapping. Pediatr Cardiol. 2001;22(4):327–32.CrossRefPubMed
18.
go back to reference Frommelt PC, Friedberg DZ, Frommelt MA, Williamson JG. Anomalous origin of the right coronary artery from the left sinus of valsalva: transthoracic echocardiographic diagnosis. J Am Soc Echocardiogr. 1999;12(3):221–4.CrossRefPubMed Frommelt PC, Friedberg DZ, Frommelt MA, Williamson JG. Anomalous origin of the right coronary artery from the left sinus of valsalva: transthoracic echocardiographic diagnosis. J Am Soc Echocardiogr. 1999;12(3):221–4.CrossRefPubMed
19.
go back to reference Pasquini L, Sanders SP, Parness IA, Wernovsky G, Mayer Jr JE, Van der Velde ME, et al. Coronary echocardiography in 406 patients with d-loop transposition of the great arteries. J Am Coll Cardiol. 1994;24(3):763–8.CrossRefPubMed Pasquini L, Sanders SP, Parness IA, Wernovsky G, Mayer Jr JE, Van der Velde ME, et al. Coronary echocardiography in 406 patients with d-loop transposition of the great arteries. J Am Coll Cardiol. 1994;24(3):763–8.CrossRefPubMed
20.
go back to reference Pelliccia A, Spataro A, Maron BJ. Prospective echocardiographic screening for coronary artery anomalies in 1,360 elite competitive athletes. Am J Cardiol. 1993;72(12):978–9.CrossRefPubMed Pelliccia A, Spataro A, Maron BJ. Prospective echocardiographic screening for coronary artery anomalies in 1,360 elite competitive athletes. Am J Cardiol. 1993;72(12):978–9.CrossRefPubMed
21.
go back to reference Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244(2):419–28.CrossRefPubMed Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244(2):419–28.CrossRefPubMed
22.
go back to reference Ghadri JR, Kazakauskaite E, Braunschweig S, Burger IA, Frank M, Fiechter M, et al. Congenital coronary anomalies detected by coronary computed tomography compared to invasive coronary angiography. BMC Cardiovasc Disord. 2014;14:81.CrossRefPubMedPubMedCentral Ghadri JR, Kazakauskaite E, Braunschweig S, Burger IA, Frank M, Fiechter M, et al. Congenital coronary anomalies detected by coronary computed tomography compared to invasive coronary angiography. BMC Cardiovasc Disord. 2014;14:81.CrossRefPubMedPubMedCentral
23.
go back to reference Dallaire F, Dahdah N. New equations and a critical appraisal of coronary artery Z scores in healthy children. J Am Soc Echocardiogr. 2011;24(1):60–74.CrossRefPubMed Dallaire F, Dahdah N. New equations and a critical appraisal of coronary artery Z scores in healthy children. J Am Soc Echocardiogr. 2011;24(1):60–74.CrossRefPubMed
24.
go back to reference Lin K, Lloyd-Jones DM, Liu Y, Bi X, Li D, Carr JC. Noninvasive Evaluation of Coronary Distensibility in Older Adults: A Feasibility Study with MR Angiography. Radiology. 2011;261(3):771–8.CrossRefPubMedPubMedCentral Lin K, Lloyd-Jones DM, Liu Y, Bi X, Li D, Carr JC. Noninvasive Evaluation of Coronary Distensibility in Older Adults: A Feasibility Study with MR Angiography. Radiology. 2011;261(3):771–8.CrossRefPubMedPubMedCentral
Metadata
Title
Coronary artery size and origin imaging in children: a comparative study of MRI and trans-thoracic echocardiography
Authors
Tarique Hussain
Sujeev Mathur
Sarah A. Peel
Israel Valverde
Karolina Bilska
Markus Henningsson
Rene M. Botnar
John Simpson
Gerald F. Greil
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0095-7

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue