Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Technical advance

Cell recognition based on topological sparse coding for microscopy imaging of focused ultrasound treatment

Authors: Zhenyou Wang, Jiang Zhu, Yanmei Xue, Changxiu Song, Ning Bi

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

Ultrasound is considered a reliable, widely available, non-invasive, and inexpensive imaging technique for assessing and detecting the development phases of cancer; both in vivo and ex vivo, and for understanding the effects on cell cycle and viability after ultrasound treatment.

Methods

Based on the topological continuity characteristics, and that adjacent points or areas represent similar features, we propose a topological penalized convex objective function of sparse coding, to recognize similar cell phases.

Results

This method introduces new features using a deep learning method of sparse coding with topological continuity characteristics. Large-scale comparison tests demonstrate that the RAW can outperform SIFT GIST and HoG as the input features with this method, achieving higher sensitivity, specificity, F1 score, and accuracy.

Conclusions

Experimental results show that the proposed topological sparse coding technique is valid and effective for extracting new features, and the proposed system was effective for cell recognition of microscopy images of theMDA-MB-231 cell line. This method allows features from sparse coding learning methods to have topological continuity characteristics, and the RAW features are more applicable for the deep learning of the topological sparse coding method than SIFT GIST and HoG.
Literature
1.
go back to reference Su H, Yin Z, Huh S, Kanade T. Cell Segmentation in Phase Contrast Microscopy Images via Semi-supervised Clustering over Optics-related Features. Med Image Anal. 2013;17:746–65.CrossRefPubMed Su H, Yin Z, Huh S, Kanade T. Cell Segmentation in Phase Contrast Microscopy Images via Semi-supervised Clustering over Optics-related Features. Med Image Anal. 2013;17:746–65.CrossRefPubMed
2.
go back to reference Zhou X, Wong STC. Informatics challenges of High-throughput micros-copy. IEEE Signal Proc Mag. 2006;23:63–72.CrossRef Zhou X, Wong STC. Informatics challenges of High-throughput micros-copy. IEEE Signal Proc Mag. 2006;23:63–72.CrossRef
3.
go back to reference Baguley BC, Marshall ES. In vitro modeling of human tumor behavior in drug discovery programmes. Eur J Canver. 2004;40:794–801.CrossRef Baguley BC, Marshall ES. In vitro modeling of human tumor behavior in drug discovery programmes. Eur J Canver. 2004;40:794–801.CrossRef
4.
go back to reference Oliva A, Torralba A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. Int J Comput Vis. 2001;42(3):145–75.CrossRef Oliva A, Torralba A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. Int J Comput Vis. 2001;42(3):145–75.CrossRef
5.
go back to reference Neel JC, Lebrun JJ. Activin and TGFβ regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 2013;25(7):1556–66.CrossRefPubMed Neel JC, Lebrun JJ. Activin and TGFβ regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 2013;25(7):1556–66.CrossRefPubMed
6.
go back to reference Zhang Y, Duan C, Bian C, Xiong Y, Zhang J. Steroid receptor coactivator-1: A versatile regulator and promising therapeutic target for breast cancer. J Steroid Biochem Mol Biol. 2013;138:17–23.CrossRefPubMed Zhang Y, Duan C, Bian C, Xiong Y, Zhang J. Steroid receptor coactivator-1: A versatile regulator and promising therapeutic target for breast cancer. J Steroid Biochem Mol Biol. 2013;138:17–23.CrossRefPubMed
7.
go back to reference Wong C, Chen AA, Behr B, Shen S. Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod BioMed Online. 2013;26(2):120–9.CrossRefPubMed Wong C, Chen AA, Behr B, Shen S. Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod BioMed Online. 2013;26(2):120–9.CrossRefPubMed
8.
go back to reference Brieu N, Navab N, Serbanovic-Canic J, Ouwehand WH, Stemple DL, Cvejic A, et al. Image-based characterization of thrombus formation in time-lapse DIC microscopy. Med Image Anal. 2012;16(4):915–31.CrossRefPubMedPubMedCentral Brieu N, Navab N, Serbanovic-Canic J, Ouwehand WH, Stemple DL, Cvejic A, et al. Image-based characterization of thrombus formation in time-lapse DIC microscopy. Med Image Anal. 2012;16(4):915–31.CrossRefPubMedPubMedCentral
9.
go back to reference Olshausen B, Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(6583):607–9.CrossRefPubMed Olshausen B, Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(6583):607–9.CrossRefPubMed
10.
go back to reference Hyvärinen A, Hoyer PO. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Res. 2001;41(18):2413–23.CrossRefPubMed Hyvärinen A, Hoyer PO. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Res. 2001;41(18):2413–23.CrossRefPubMed
11.
go back to reference Jenatton R, Mairal J, Obozinski G, Bach F. Proximal Methods for Hierarchical Sparse Coding. J Mach Learn Res. 2011;12:2297–334. Jenatton R, Mairal J, Obozinski G, Bach F. Proximal Methods for Hierarchical Sparse Coding. J Mach Learn Res. 2011;12:2297–334.
13.
go back to reference Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Trans Pattern Anal Mach Intell. 2012;34(4):791–804.CrossRefPubMed Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Trans Pattern Anal Mach Intell. 2012;34(4):791–804.CrossRefPubMed
14.
go back to reference Wählby C, Lindblad J, Vondrus M, Bengtsson E, Björkesten L. Algorithms for cytoplasm segmentation of fluorescence labelled cells. Anal Cell Pathol. 2002;24(2–3):101–11.CrossRefPubMedPubMedCentral Wählby C, Lindblad J, Vondrus M, Bengtsson E, Björkesten L. Algorithms for cytoplasm segmentation of fluorescence labelled cells. Anal Cell Pathol. 2002;24(2–3):101–11.CrossRefPubMedPubMedCentral
15.
go back to reference Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA, Roysam B. A hybrid 3-D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A. 2003;56A:23–36.CrossRef Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA, Roysam B. A hybrid 3-D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A. 2003;56A:23–36.CrossRef
16.
go back to reference Yan J, Zhou X, Yang Q, Liu N, Cheng Q, Wong STC. An efficient system for optical microscopy cell image segmentation, tracking and cell phase identification. Atlanta, GA: Image Processing 2006 IEEE International Conference; 2006. p. 1917–20. Yan J, Zhou X, Yang Q, Liu N, Cheng Q, Wong STC. An efficient system for optical microscopy cell image segmentation, tracking and cell phase identification. Atlanta, GA: Image Processing 2006 IEEE International Conference; 2006. p. 1917–20.
17.
go back to reference Memarzadeh M, Golparvar-Fard M, Niebles JC. Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors. Autom Constr. 2013;32:24–37.CrossRef Memarzadeh M, Golparvar-Fard M, Niebles JC. Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors. Autom Constr. 2013;32:24–37.CrossRef
18.
go back to reference Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Journal International Journal of Computer Vision. 2004;60(2):91–110.CrossRef Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Journal International Journal of Computer Vision. 2004;60(2):91–110.CrossRef
19.
go back to reference Zou H, Hastie T. Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society, Series B. 2005;67:301–20.CrossRef Zou H, Hastie T. Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society, Series B. 2005;67:301–20.CrossRef
20.
go back to reference Liu AA, Li K, Kanade T. Spatiotemporal Mitosis Event Detection in Time-Lapse Phase Contrast Microscopy Image Sequences. Suntec City: Multimedia and Expo (ICME), 2010 IEEE International Conference; 2010. p. 161–6. Liu AA, Li K, Kanade T. Spatiotemporal Mitosis Event Detection in Time-Lapse Phase Contrast Microscopy Image Sequences. Suntec City: Multimedia and Expo (ICME), 2010 IEEE International Conference; 2010. p. 161–6.
22.
go back to reference Tong T, Wolz R, Coupé P, Hajnal JV, Rueckert D. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. Neuroimage. 2013;76(1):11–23.CrossRefPubMed Tong T, Wolz R, Coupé P, Hajnal JV, Rueckert D. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. Neuroimage. 2013;76(1):11–23.CrossRefPubMed
23.
go back to reference Meng Wang, Xiaobo Zhou, Fuhai Li, Jeremy Huckins, Randall W King, Stephen T.C. Wong. Novel Cell Segmentation and Online SVM for Cell Cycle Phase Identification in Automated Microscopy.Bioinformatics. 2008;24(1):94-101. Meng Wang, Xiaobo Zhou, Fuhai Li, Jeremy Huckins, Randall W King, Stephen T.C. Wong. Novel Cell Segmentation and Online SVM for Cell Cycle Phase Identification in Automated Microscopy.Bioinformatics. 2008;24(1):94-101.
24.
go back to reference Chen S, Donoho D, Saunders M. Atomicde composition by basis pursuit. SIAM J Sci Comput. 1999;20:33–61.CrossRef Chen S, Donoho D, Saunders M. Atomicde composition by basis pursuit. SIAM J Sci Comput. 1999;20:33–61.CrossRef
25.
go back to reference Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996;67:267–88. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996;67:267–88.
26.
go back to reference Andra’s L, Zsolt P, Ga’bor S. Sparse and silent coding in neural circuits. Neurocomputing. 2012;79:115–24.CrossRef Andra’s L, Zsolt P, Ga’bor S. Sparse and silent coding in neural circuits. Neurocomputing. 2012;79:115–24.CrossRef
27.
go back to reference Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit. SIAM J Sci Comput. 2001;43:129–59. Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit. SIAM J Sci Comput. 2001;43:129–59.
28.
go back to reference Ramirez I, Sapiro G. Universal regularizers for robust sparse coding and modeling. IEEE Trans Image Process. 2012;21(9):3850–64.CrossRefPubMed Ramirez I, Sapiro G. Universal regularizers for robust sparse coding and modeling. IEEE Trans Image Process. 2012;21(9):3850–64.CrossRefPubMed
Metadata
Title
Cell recognition based on topological sparse coding for microscopy imaging of focused ultrasound treatment
Authors
Zhenyou Wang
Jiang Zhu
Yanmei Xue
Changxiu Song
Ning Bi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0087-7

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue