Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Pneumothorax | Case report

Extracorporeal membrane oxygenation rescue for severe pneumocystis pneumonia with the Macklin effect: a case report

Authors: Guoqing Huang, Liping Zhou, Ning Yang, Ping Wu, Xiaoye Mo

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Pneumocystis jirovecii pneumonia (PJP) in an immunocompromised host is often associated with the Macklin effect, which can progress to spontaneous pneumomediastinum (SPM), subcutaneous emphysema (SCE), and pneumothorax (PNX). Diagnosing the causative organism of these conditions in non-HIV infected patients and treating hypoxemia while preventing further lung damage can be challenging. This study examines the case of a non-HIV infected male with SPM, SCE, and PNX secondary to severe Pneumocystis jirovecii (PJ) infection.

Case presentation

A 53-year-old male with pure red cell aplasia (PRCA) was admitted with fever, dry cough, and shortness of breath. His respiratory function progressively deteriorated due to the development of SPM, SCE, and PNX, eventually requiring endotracheal intubation and invasive ventilation. As a result of high pressure in his airways occasioned by lung recruitment maneuvers, his pulmonary parameters worsened, necessitating veno-venous (VV) extracorporeal membrane oxygenation (ECMO) therapy. The early initiation of VV-ECMO facilitated ultra-protective lung ventilation and prevented the progression of SPM, SCE, and PNX. Traditional diagnostic assays were unrevealing, whereupon the patient resorted to the metagenomic next-generation sequencing technology for uncovering potential pathogens. Consequently, we detected a significantly higher infection by PJ in the patient’s bronchoscopy lavage fluid. Finally, the patient was successfully treated with appropriate antimicrobials and was decannulated after nine days of ECMO support.

Conclusions

SPM, SCE, and PNX are rare clinical manifestations of PJP. However, they can be considered as poor prognostic factors of the infection. Physicians should, therefore, be alert to the possibility of PJP in immunocompromised patients.
Literature
1.
go back to reference Roux A, Gonzalez F, Roux M, Mehrad M, Menotti J, Zahar JR, et al. Update on pulmonary Pneumocystis jirovecii infection in non-HIV patients. Med Mal Infect. 2014;44(5):185–98.CrossRef Roux A, Gonzalez F, Roux M, Mehrad M, Menotti J, Zahar JR, et al. Update on pulmonary Pneumocystis jirovecii infection in non-HIV patients. Med Mal Infect. 2014;44(5):185–98.CrossRef
2.
go back to reference DP KI, Valachis A, Velegraki M, Antoniou M, Christofaki M, Vrentzos GE, et al. Predisposing factors, clinical characteristics and outcome of Pneumonocystis jirovecii pneumonia in HIV-negative patients. Kansenshogaku Zasshi. 2014;88(6 Suppl 11):21–5. DP KI, Valachis A, Velegraki M, Antoniou M, Christofaki M, Vrentzos GE, et al. Predisposing factors, clinical characteristics and outcome of Pneumonocystis jirovecii pneumonia in HIV-negative patients. Kansenshogaku Zasshi. 2014;88(6 Suppl 11):21–5.
3.
go back to reference Wintermark M, Schnyder P. The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest. 2001;120(2):543–7.CrossRef Wintermark M, Schnyder P. The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest. 2001;120(2):543–7.CrossRef
4.
go back to reference Di Saverio S, Kawamukai K, Biscardi A, Villani S, Zucchini L, Tugnoli G. Trauma-induced “Macklin effect” with pneumothorax and large pneumomediastinum, disguised by allergy. Front Med. 2013;7(3):386–8.CrossRef Di Saverio S, Kawamukai K, Biscardi A, Villani S, Zucchini L, Tugnoli G. Trauma-induced “Macklin effect” with pneumothorax and large pneumomediastinum, disguised by allergy. Front Med. 2013;7(3):386–8.CrossRef
5.
go back to reference Sherman M, Levin D, Breidbart D. Pneumocystis carinii pneumonia with spontaneous pneumothorax. A report of three cases. Chest. 1986;90(4):609–10.CrossRef Sherman M, Levin D, Breidbart D. Pneumocystis carinii pneumonia with spontaneous pneumothorax. A report of three cases. Chest. 1986;90(4):609–10.CrossRef
6.
go back to reference Villalona-Calero MA, Schrem SS, Phelps KR. Pneumomediastinum complicating Pneumocystis carinii pneumonia in a patient with AIDS. Am J Med Sci. 1989;297(5):328–30.CrossRef Villalona-Calero MA, Schrem SS, Phelps KR. Pneumomediastinum complicating Pneumocystis carinii pneumonia in a patient with AIDS. Am J Med Sci. 1989;297(5):328–30.CrossRef
7.
go back to reference She WH, Chok KSH, Li IWS, Ma KW, Sin SL, Dai WC, et al. Pneumocystis jirovecii-related spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema in a liver transplant recipient: a case report. BMC Infect Dis. 2019;19(1):66.CrossRef She WH, Chok KSH, Li IWS, Ma KW, Sin SL, Dai WC, et al. Pneumocystis jirovecii-related spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema in a liver transplant recipient: a case report. BMC Infect Dis. 2019;19(1):66.CrossRef
8.
go back to reference Weng L, Huang X, Chen L, Feng LQ, Jiang W, Hu XY, et al. Prognostic factors for severe Pneumocystis jiroveci pneumonia of non-HIV patients in intensive care unit: a bicentric retrospective study. BMC Infect Dis. 2016;16(1):528.CrossRef Weng L, Huang X, Chen L, Feng LQ, Jiang W, Hu XY, et al. Prognostic factors for severe Pneumocystis jiroveci pneumonia of non-HIV patients in intensive care unit: a bicentric retrospective study. BMC Infect Dis. 2016;16(1):528.CrossRef
9.
go back to reference Orsini J, Gawlak H, Sabayev V, Shah K, Washburn L, McCarthy K, et al. Pneumocystis jirovecii pneumonia-associated acute respiratory distress syndrome complicated by pneumomediastinum and pneumopericardium in a non-human immunodeficiency virus-infected patient. J Clin Med Res. 2020;12(3):209–13.CrossRef Orsini J, Gawlak H, Sabayev V, Shah K, Washburn L, McCarthy K, et al. Pneumocystis jirovecii pneumonia-associated acute respiratory distress syndrome complicated by pneumomediastinum and pneumopericardium in a non-human immunodeficiency virus-infected patient. J Clin Med Res. 2020;12(3):209–13.CrossRef
10.
go back to reference Bukamur HS, Karem E, Fares S, Al-Ourani M, Al-Astal A. Pneumocystis Jirovecii (carinii) pneumonia causing lung cystic lesions and pneumomediastinum in non-HIV infected patient. Respir Med Case Rep. 2018;25:174–6.PubMedPubMedCentral Bukamur HS, Karem E, Fares S, Al-Ourani M, Al-Astal A. Pneumocystis Jirovecii (carinii) pneumonia causing lung cystic lesions and pneumomediastinum in non-HIV infected patient. Respir Med Case Rep. 2018;25:174–6.PubMedPubMedCentral
12.
go back to reference Manna S, Maron SZ, Cedillo MA, Voutsinas N, Toussie D, Finkelstein M, et al. Spontaneous subcutaneous emphysema and pneumomediastinum in non-intubated patients with COVID-19. Clin Imaging. 2020;67:207–13.CrossRef Manna S, Maron SZ, Cedillo MA, Voutsinas N, Toussie D, Finkelstein M, et al. Spontaneous subcutaneous emphysema and pneumomediastinum in non-intubated patients with COVID-19. Clin Imaging. 2020;67:207–13.CrossRef
13.
go back to reference Vidrio Duarte R, Vidrio Duarte E, Gutierrez Ochoa J, Gaviria Leiva MC, Pimentel-Hayashi JA. Pneumoperitoneum in a COVID-19 patient due to the Macklin effect. Cureus. 2021;13(2):e13200.PubMedPubMedCentral Vidrio Duarte R, Vidrio Duarte E, Gutierrez Ochoa J, Gaviria Leiva MC, Pimentel-Hayashi JA. Pneumoperitoneum in a COVID-19 patient due to the Macklin effect. Cureus. 2021;13(2):e13200.PubMedPubMedCentral
14.
go back to reference Chu CM, Leung YY, Hui JY, Hung IF, Chan VL, Leung WS, et al. Spontaneous pneumomediastinum in patients with severe acute respiratory syndrome. Eur Respir J. 2004;23(6):802–4.CrossRef Chu CM, Leung YY, Hui JY, Hung IF, Chan VL, Leung WS, et al. Spontaneous pneumomediastinum in patients with severe acute respiratory syndrome. Eur Respir J. 2004;23(6):802–4.CrossRef
15.
go back to reference Udupa S, Hameed T, Kovesi T. Pneumomediastinum and subcutaneous emphysema associated with pandemic (H1N1) influenza in three children. CMAJ. 2011;183(2):220–2.CrossRef Udupa S, Hameed T, Kovesi T. Pneumomediastinum and subcutaneous emphysema associated with pandemic (H1N1) influenza in three children. CMAJ. 2011;183(2):220–2.CrossRef
16.
go back to reference Di Maio S, Esposito A, Margonato A, Godino C. Massive spontaneous subcutaneous emphysema and pneumomediastinum as rare complications of COVID-19 pneumonia. J Cardiothorac Vasc Anesth. 2021;36(5):1415–8.CrossRef Di Maio S, Esposito A, Margonato A, Godino C. Massive spontaneous subcutaneous emphysema and pneumomediastinum as rare complications of COVID-19 pneumonia. J Cardiothorac Vasc Anesth. 2021;36(5):1415–8.CrossRef
17.
go back to reference Janssen J, Kamps MJA, Joosten TMB, Barten DG. Spontaneous pneumomediastinum in a male adult with COVID-19 pneumonia. Am J Emerg Med. 2021;40:228.e3.CrossRef Janssen J, Kamps MJA, Joosten TMB, Barten DG. Spontaneous pneumomediastinum in a male adult with COVID-19 pneumonia. Am J Emerg Med. 2021;40:228.e3.CrossRef
18.
go back to reference Marsico S, Del Carpio Bellido LA, Zuccarino F. Spontaneous pneumomediastinum and Macklin effect in COVID-19 patients. Arch Bronconeumol. 2021;57:67.CrossRef Marsico S, Del Carpio Bellido LA, Zuccarino F. Spontaneous pneumomediastinum and Macklin effect in COVID-19 patients. Arch Bronconeumol. 2021;57:67.CrossRef
19.
go back to reference Eperjesiova B, Hart E, Shokr M, Sinha P, Ferguson GT. Spontaneous pneumomediastinum/pneumothorax in patients with COVID-19. Cureus. 2020;12(7):e8996.PubMedPubMedCentral Eperjesiova B, Hart E, Shokr M, Sinha P, Ferguson GT. Spontaneous pneumomediastinum/pneumothorax in patients with COVID-19. Cureus. 2020;12(7):e8996.PubMedPubMedCentral
20.
go back to reference Yee D, Fu D, Hui C, Dharmadhikari N, Carino G. A rare case of 4 Ps: bilateral pneumothoraces and pneumomediastinum in pneumocystis pneumonia. R I Med J. 2020;103(5):52–4. Yee D, Fu D, Hui C, Dharmadhikari N, Carino G. A rare case of 4 Ps: bilateral pneumothoraces and pneumomediastinum in pneumocystis pneumonia. R I Med J. 2020;103(5):52–4.
21.
go back to reference Li MC, Lee NY, Lee CC, Lee HC, Chang CM, Ko WC. Pneumocystis jiroveci pneumonia in immunocompromised patients: delayed diagnosis and poor outcomes in non-HIV-infected individuals. J Microbiol Immunol Infect. 2014;47(1):42–7.CrossRef Li MC, Lee NY, Lee CC, Lee HC, Chang CM, Ko WC. Pneumocystis jiroveci pneumonia in immunocompromised patients: delayed diagnosis and poor outcomes in non-HIV-infected individuals. J Microbiol Immunol Infect. 2014;47(1):42–7.CrossRef
22.
go back to reference Ali HS, Hassan IF, George S. Extra corporeal membrane oxygenation to facilitate lung protective ventilation and prevent ventilator-induced lung injury in severe Pneumocystis pneumonia with pneumomediastinum: a case report and short literature review. BMC Pulm Med. 2016;16(1):52.CrossRef Ali HS, Hassan IF, George S. Extra corporeal membrane oxygenation to facilitate lung protective ventilation and prevent ventilator-induced lung injury in severe Pneumocystis pneumonia with pneumomediastinum: a case report and short literature review. BMC Pulm Med. 2016;16(1):52.CrossRef
23.
go back to reference Antonacci F, De Tisi C, Donadoni I, Maurelli M, Iotti G, Taccone FS, et al. Veno-venous ECMO during surgical repair of tracheal perforation: a case report. Int J Surg Case Rep. 2018;42:64–6.CrossRef Antonacci F, De Tisi C, Donadoni I, Maurelli M, Iotti G, Taccone FS, et al. Veno-venous ECMO during surgical repair of tracheal perforation: a case report. Int J Surg Case Rep. 2018;42:64–6.CrossRef
Metadata
Title
Extracorporeal membrane oxygenation rescue for severe pneumocystis pneumonia with the Macklin effect: a case report
Authors
Guoqing Huang
Liping Zhou
Ning Yang
Ping Wu
Xiaoye Mo
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07550-9

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue