Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Imipenem | Research

Multidrug-resistant bacteria with ESBL genes: a growing threat among people living with HIV/AIDS in Nepal

Authors: Riju Maharjan, Anup Bastola, Nabaraj Adhikari, Komal Raj Rijal, Megha Raj Banjara, Prakash Ghimire, Upendra Thapa Shrestha

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Bacterial opportunistic infections are common in people living with HIV/AIDS (PLHA). Besides HIV-TB co-infection, lower respiratory tract infections (LRTIs) due to multidrug-resistant (MDR) bacteria cause significant morbidity and mortality among PLHA. This study identified bacterial co-infection of the lower respiratory tract and detected plasmid-mediated blaTEM and blaCTX-M genes among Extended-Spectrum β-Lactamase (ESBL) producing isolates from sputum samples in PLHA.

Methods

A total of 263 PLHA with LRTIs were enrolled in this study, out of which, 50 were smokers, 70 had previous pulmonary tuberculosis, and 21 had CD4 count < 200 cells/µl. Sputum samples collected from PLHA were processed with standard microbiological methods to identify the possible bacterial pathogens. The identified bacterial isolates were assessed for antibiotic susceptibility pattern using modified Kirby Bauer disk diffusion method following Clinical Laboratory Standard Institute (CLSI) guidelines. In addition, plasmid DNA was extracted from MDR and ESBL producers for screening of ESBL genes; blaCTX-M and blaTEM by conventional PCR method using specific primers.

Results

Of 263 sputum samples, 67 (25.48%) showed bacterial growth. Among different bacterial pathogens, Klebsiella pneumoniae, (17; 25.37%) was the most predominant, followed by Haemophillus influenzae, (14; 20.90%) and Escherichia coli, (12; 17.91%). A higher infection rate (4/8; 50%) was observed among people aged 61–70 years, whereas no infection was observed below 20 years. About 30.0% (15/50) of smokers, 32.86% (23/70) cases with previous pulmonary tuberculosis, and 52.38% (11/21) with CD4 count < 200 cells/µl had bacterial LRTIs. Among 53 bacterial isolates excluding H. influenzae, 28 isolates were MDR and 23 were ESBL producers. All ESBL producers were sensitive to colistin and polymyxin B. Among ESBL producers, 47.83% (11/23) possessed blaCTX-M, 8.6% (2/23) were positive for blaTEM gene, and 43.48% (10/23) possessed both ESBL genes.

Conclusion

The increasing rate of MDR bacterial infections, mainly ESBL producers of LRTIs causes difficulty in disease management, leading to high morbidity and mortality of PLHA. Hence, it is crucial to know the antibiogram pattern of the isolates to recommend effective antimicrobial therapy to treat LRTIs in PLHA.
Literature
2.
go back to reference Factsheet. HIV epidemic update of Nepal. 2020. Factsheet. HIV epidemic update of Nepal. 2020.
3.
go back to reference Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections. Front Immunol. 2017;8:580.CrossRefPubMedPubMedCentral Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections. Front Immunol. 2017;8:580.CrossRefPubMedPubMedCentral
4.
go back to reference NACO. Guidelines for prevention and management of common opportunistic infections/malignancies among HIV infected adult and adolescents. National AIDS control organization Ministry of Health and Family Welfare Government of India. 2007. NACO. Guidelines for prevention and management of common opportunistic infections/malignancies among HIV infected adult and adolescents. National AIDS control organization Ministry of Health and Family Welfare Government of India. 2007.
5.
go back to reference Ojha CR, Rijal N, Khagendra KC, Palpasa K, Kansakar P, Gupta BP, et al. Lower respiratory tract infections among HIV positive and control group in Nepal. Virusdisease. 2015;26(1–2):77–81.CrossRefPubMedPubMedCentral Ojha CR, Rijal N, Khagendra KC, Palpasa K, Kansakar P, Gupta BP, et al. Lower respiratory tract infections among HIV positive and control group in Nepal. Virusdisease. 2015;26(1–2):77–81.CrossRefPubMedPubMedCentral
6.
go back to reference Kc R, Adhikari S, Bastola A, Devkota L, Bhandari P, Ghimire P, et al. Opportunistic respiratory infections in HIV patients attending sukraraj tropical and infectious diseases hospital in Kathmandu. Nepal HIV AIDS (Auckl). 2019;11:357–67. Kc R, Adhikari S, Bastola A, Devkota L, Bhandari P, Ghimire P, et al. Opportunistic respiratory infections in HIV patients attending sukraraj tropical and infectious diseases hospital in Kathmandu. Nepal HIV AIDS (Auckl). 2019;11:357–67.
7.
go back to reference Ojo-Bola O, Oluyege AO. Antibiotics resistance of bacteria associated with pneumonia in HIV/AIDS patients in Nigeria. Am J Infect Dis Microbiol. 2014;2(6):138–44. Ojo-Bola O, Oluyege AO. Antibiotics resistance of bacteria associated with pneumonia in HIV/AIDS patients in Nigeria. Am J Infect Dis Microbiol. 2014;2(6):138–44.
8.
go back to reference Kandati J, Boorsu S, Ponugoti M, Samudrala V. Bacterial and fungal agents causing lower respiratory tract infections in patients with human immunodeficiency virus infection. Int J Res Med Sci. 2016:3595–600. Kandati J, Boorsu S, Ponugoti M, Samudrala V. Bacterial and fungal agents causing lower respiratory tract infections in patients with human immunodeficiency virus infection. Int J Res Med Sci. 2016:3595–600.
9.
go back to reference Cheesbrough M. District laboratory practice in tropical countries. Part 2. 2nd ed. 22, editor. Cambridge: Cambdrige University Press; 2006. Cheesbrough M. District laboratory practice in tropical countries. Part 2. 2nd ed. 22, editor. Cambridge: Cambdrige University Press; 2006.
10.
go back to reference CLSI. Clinical Laboratory Standard Institute (CLSI): performance standards for antimicrobial susceptibility testing. 29 ed: Clinical and Laboratory Standrads Institute antimicrobial susceptibility testing standards M02, M07 and M11.; 2019. 118–28 p. CLSI. Clinical Laboratory Standard Institute (CLSI): performance standards for antimicrobial susceptibility testing. 29 ed: Clinical and Laboratory Standrads Institute antimicrobial susceptibility testing standards M02, M07 and M11.; 2019. 118–28 p.
11.
go back to reference Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.CrossRefPubMed Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.CrossRefPubMed
12.
go back to reference Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 1989. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 1989.
13.
go back to reference Thapa Shrestha U, Adhikari N. A practical manual for microbial genetics. 2014:pp. 68–92. Thapa Shrestha U, Adhikari N. A practical manual for microbial genetics. 2014:pp. 68–92.
14.
go back to reference Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 2003;47(12):3724–32.CrossRefPubMedPubMedCentral Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 2003;47(12):3724–32.CrossRefPubMedPubMedCentral
15.
go back to reference Sharma M, Pathak S, Srivastava P. Prevalence and antibiogram of extended spectrum β-Lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J Clin Diagn Res. 2013;7(10):5. Sharma M, Pathak S, Srivastava P. Prevalence and antibiogram of extended spectrum β-Lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J Clin Diagn Res. 2013;7(10):5.
16.
go back to reference Chandwani J, Vyas N, Hooja S. Antibiotic susceptibility pattern of bacteria causing lower respiratory tract infections in HIV/AIDS patients with correlation to CD4+T cell counts. Int J Med Res Prof. 2017;3(1):6. Chandwani J, Vyas N, Hooja S. Antibiotic susceptibility pattern of bacteria causing lower respiratory tract infections in HIV/AIDS patients with correlation to CD4+T cell counts. Int J Med Res Prof. 2017;3(1):6.
17.
go back to reference WHO. Guidelines on cotrimoxazol prophylaxis for HIV related infections among children, adolescent and adults. 2006. WHO. Guidelines on cotrimoxazol prophylaxis for HIV related infections among children, adolescent and adults. 2006.
18.
go back to reference Golub JE, Cohn S, Saraceni V, Cavalcante SC, Pacheco AG, Moulton LH, et al. Long-term protection from isoniazid preventive therapy for tuberculosis in HIV-infected patients in a medium-burden tuberculosis setting: the TB/HIV in Rio (THRio) study. Clin Infect Dis. 2014;60(4):639–45.CrossRefPubMedPubMedCentral Golub JE, Cohn S, Saraceni V, Cavalcante SC, Pacheco AG, Moulton LH, et al. Long-term protection from isoniazid preventive therapy for tuberculosis in HIV-infected patients in a medium-burden tuberculosis setting: the TB/HIV in Rio (THRio) study. Clin Infect Dis. 2014;60(4):639–45.CrossRefPubMedPubMedCentral
19.
20.
go back to reference Macfarlane JT, Macfarlane RM, Rose DH, Colville A, Guion A. Prospective study of aetiology and outcome of adult lower-respiratory-tract infections in the community. The Lancet. 1993;341(8844):P511–4.CrossRef Macfarlane JT, Macfarlane RM, Rose DH, Colville A, Guion A. Prospective study of aetiology and outcome of adult lower-respiratory-tract infections in the community. The Lancet. 1993;341(8844):P511–4.CrossRef
21.
go back to reference Yadav K, Prakash S. Bacteriological profile of lower respiratory tract infection (LRTI) among HIV seropositive cases in Central Terai of Nepal. Int J Curr Microbiol App Sci. 2015;4(11):12. Yadav K, Prakash S. Bacteriological profile of lower respiratory tract infection (LRTI) among HIV seropositive cases in Central Terai of Nepal. Int J Curr Microbiol App Sci. 2015;4(11):12.
22.
go back to reference Mayaud C, Parrot A, Cadranel J. Pyogenic bacterial lower respiratory tract infection in human immunodeficiency virus-infected patients. Eur Respir J Suppl. 2002;36:28s–39s.CrossRefPubMed Mayaud C, Parrot A, Cadranel J. Pyogenic bacterial lower respiratory tract infection in human immunodeficiency virus-infected patients. Eur Respir J Suppl. 2002;36:28s–39s.CrossRefPubMed
23.
go back to reference Feldman C, Anderson R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect. 2013;67(3):169–84.CrossRefPubMed Feldman C, Anderson R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect. 2013;67(3):169–84.CrossRefPubMed
24.
go back to reference Nachiappan AC, Rahbar K, Shi X, Guy ES, Mortani Barbosa EJ Jr, Shroff GS, et al. Pulmonary tuberculosis: role of radiology in diagnosis and management. Radiographics. 2017;37(1):52–72.CrossRefPubMed Nachiappan AC, Rahbar K, Shi X, Guy ES, Mortani Barbosa EJ Jr, Shroff GS, et al. Pulmonary tuberculosis: role of radiology in diagnosis and management. Radiographics. 2017;37(1):52–72.CrossRefPubMed
25.
go back to reference Jemal M, Deress T, Belachew T, Adem Y. Antimicrobial resistance patterns of bacterial isolates from blood culture among HIV/AIDS patients at Felege Hiwot Referral Hospital, Northwest Ethiopia. Int J Microbiol. 2020;2020:8893266.CrossRefPubMedPubMedCentral Jemal M, Deress T, Belachew T, Adem Y. Antimicrobial resistance patterns of bacterial isolates from blood culture among HIV/AIDS patients at Felege Hiwot Referral Hospital, Northwest Ethiopia. Int J Microbiol. 2020;2020:8893266.CrossRefPubMedPubMedCentral
26.
go back to reference Mishra SK, Acharya J, Kattel HP, Koirala J, Rijal BP, Pokhrel BM. Metallo-beta-lactamase producing gram-negative bacterial isolates. J Nepal Health Res Counc. 2012;10(22):208–13.PubMed Mishra SK, Acharya J, Kattel HP, Koirala J, Rijal BP, Pokhrel BM. Metallo-beta-lactamase producing gram-negative bacterial isolates. J Nepal Health Res Counc. 2012;10(22):208–13.PubMed
27.
go back to reference Cordero E, Pachón J, Rivero A, Girón JA, Gómez-Mateos J, Merino MD, et al. Haemophilus influenzae pneumonia in human immunodeficiency virus-infected patients. Clin Infect Dis. 2000;30(3):5.CrossRef Cordero E, Pachón J, Rivero A, Girón JA, Gómez-Mateos J, Merino MD, et al. Haemophilus influenzae pneumonia in human immunodeficiency virus-infected patients. Clin Infect Dis. 2000;30(3):5.CrossRef
28.
go back to reference Adeleye A, Uju L, Idika N, Sobande O. Cotrimoxazole resistance in Streptococcus pneumoniae isolated from sputum of HIV-positive patients. West Indian Med J. 2008;57(5):3. Adeleye A, Uju L, Idika N, Sobande O. Cotrimoxazole resistance in Streptococcus pneumoniae isolated from sputum of HIV-positive patients. West Indian Med J. 2008;57(5):3.
29.
go back to reference Ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int. 2018;2018:9519718.CrossRefPubMedPubMedCentral Ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int. 2018;2018:9519718.CrossRefPubMedPubMedCentral
30.
go back to reference de Oliveira CF, Salla A, Lara VM, Rieger A, Horta JA, Alves SH. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in nosocomial patients and molecular characterization of the shv type isolates. Braz J Microbiol. 2010;41(2):5.CrossRef de Oliveira CF, Salla A, Lara VM, Rieger A, Horta JA, Alves SH. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in nosocomial patients and molecular characterization of the shv type isolates. Braz J Microbiol. 2010;41(2):5.CrossRef
31.
go back to reference Gautam V, Thakur A, Sharma M, Singh A, Bansal S, Sharma A, et al. Molecular characterization of extended-spectrum beta-lactamases among clinical isolates of Escherichia coli & Klebsiella pneumoniae: a multi-centric study from tertiary care hospitals in India. Indian J Med Res. 2019;149(2):208–15.CrossRefPubMedPubMedCentral Gautam V, Thakur A, Sharma M, Singh A, Bansal S, Sharma A, et al. Molecular characterization of extended-spectrum beta-lactamases among clinical isolates of Escherichia coli & Klebsiella pneumoniae: a multi-centric study from tertiary care hospitals in India. Indian J Med Res. 2019;149(2):208–15.CrossRefPubMedPubMedCentral
Metadata
Title
Multidrug-resistant bacteria with ESBL genes: a growing threat among people living with HIV/AIDS in Nepal
Authors
Riju Maharjan
Anup Bastola
Nabaraj Adhikari
Komal Raj Rijal
Megha Raj Banjara
Prakash Ghimire
Upendra Thapa Shrestha
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07503-2

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue