Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Antibiotic | Research

Bacteriological analysis based on disease severity and clinical characteristics in patients with deep neck space abscess

Authors: Wenxiang Gao, Yu Lin, Huijun Yue, Weixiong Chen, Tianrun Liu, Jin Ye, Qian Cai, Fei Ye, Long He, Xingqiang Xie, Guoping Xiong, Jianhui Wu, Bin Wang, Weiping Wen, Wenbin Lei

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Deep neck space abscess (DNSA) is a serious infection in the head and neck. Antibiotic therapy is an important treatment in patients with DNSA. However, the results of bacterial culture need at least 48 h, and the positive rate is only 30–50%, indicating that the use of empiric antibiotic treatment for most patients with DNSA should at least 48 h or even throughout the whole course of treatment. Thus, how to use empiric antibiotics has always been a problem for clinicians. This study analyzed the distribution of bacteria based on disease severity and clinical characteristics of DNSA patients, and provides bacteriological guidance for the empiric use of antibiotics.

Methods

We analyzed 433 patients with DNSA who were diagnosed and treated at nine medical centers in Guangdong Province between January 1, 2015, and December 31, 2020. A nomogram for disease severity (mild/severe) was constructed using least absolute shrinkage and selection operator–logistic regression analysis. Clinical characteristics for the Gram reaction of the strain were identified using multivariate analyses.

Results

92 (21.2%) patients developed life-threatening complications. The nomogram for disease severity comprised of seven predictors. The area under the receiver operating characteristic curves of the nomogram in the training and validation cohorts were 0.951 and 0.931, respectively. In the mild cases, 43.2% (101/234) had positive culture results (49% for Gram-positive and 51% for Gram-negative strains). The positive rate of cultures in the patients with severe disease was 63% (58/92, 37.9% for Gram-positive, and 62.1% for Gram-negative strains). Diabetes mellitus was an independent predictor of Gram-negative strains in the mild disease group, whereas gas formation and trismus were independent predictors of Gram-positive strains in the severe disease group. The positivity rate of multidrug-resistant strains was higher in the severe disease group (12.1%) than in the mild disease group (1.0%) (P < 0.001). Metagenomic sequencing was helpful for the bacteriological diagnosis of DNSA by identifying anaerobic strains (83.3%).

Conclusion

We established a DNSA clinical severity prediction model and found some predictors for the type of Gram-staining strains in different disease severity cases. These results can help clinicians in effectively choosing an empiric antibiotic treatment.
Literature
1.
go back to reference Li RM, Kiemeney M. Infections of the Neck. Emerg Med Clin North Am. 2019;37:95–107.CrossRef Li RM, Kiemeney M. Infections of the Neck. Emerg Med Clin North Am. 2019;37:95–107.CrossRef
2.
go back to reference Beka D, Lachanas VA, Doumas S, Xytsas S, Kanatas A, Petinaki E, et al. Microorganisms involved in deep neck infection (DNIs) in Greece: detection, identification and susceptibility to antimicrobials. BMC Infect Dis. 2019;19:850.CrossRef Beka D, Lachanas VA, Doumas S, Xytsas S, Kanatas A, Petinaki E, et al. Microorganisms involved in deep neck infection (DNIs) in Greece: detection, identification and susceptibility to antimicrobials. BMC Infect Dis. 2019;19:850.CrossRef
3.
go back to reference Boscolo-Rizzo P, Stellin M, Muzzi E, Mantovani M, Fuson R, Lupato V, et al. Deep neck infections: a study of 365 cases highlighting recommendations for management and treatment. Eur Arch Otorhinolaryngol. 2012;269:1241–9.CrossRef Boscolo-Rizzo P, Stellin M, Muzzi E, Mantovani M, Fuson R, Lupato V, et al. Deep neck infections: a study of 365 cases highlighting recommendations for management and treatment. Eur Arch Otorhinolaryngol. 2012;269:1241–9.CrossRef
4.
go back to reference Saluja S, Brietzke SE, Egan KK, Klavon S, Robson CD, Waltzman ML, et al. A prospective study of 113 deep neck infections managed using a clinical practice guideline. Laryngoscope. 2013;123:3211–8.CrossRef Saluja S, Brietzke SE, Egan KK, Klavon S, Robson CD, Waltzman ML, et al. A prospective study of 113 deep neck infections managed using a clinical practice guideline. Laryngoscope. 2013;123:3211–8.CrossRef
5.
go back to reference Marioni G, Rinaldi R, Staffieri C, Marchese-Ragona R, Saia G, Stramare R, et al. Deep neck infection with dental origin: analysis of 85 consecutive cases (2000–2006). Acta Otolaryngol. 2008;128:201–6.CrossRef Marioni G, Rinaldi R, Staffieri C, Marchese-Ragona R, Saia G, Stramare R, et al. Deep neck infection with dental origin: analysis of 85 consecutive cases (2000–2006). Acta Otolaryngol. 2008;128:201–6.CrossRef
6.
go back to reference Kauffmann P, Cordesmeyer R, Troltzsch M, Sommer C, Laskawi R. Deep neck infections: A single-center analysis of 63 cases. Med Oral Patol Oral Cir Bucal. 2017;22:e536–41.PubMedPubMedCentral Kauffmann P, Cordesmeyer R, Troltzsch M, Sommer C, Laskawi R. Deep neck infections: A single-center analysis of 63 cases. Med Oral Patol Oral Cir Bucal. 2017;22:e536–41.PubMedPubMedCentral
8.
go back to reference Zhou J, Ma X. A survey on antimicrobial stewardship in 116 tertiary hospitals in China. Clin Microbiol Infect. 2019;25:e9–14.CrossRef Zhou J, Ma X. A survey on antimicrobial stewardship in 116 tertiary hospitals in China. Clin Microbiol Infect. 2019;25:e9–14.CrossRef
9.
go back to reference Lin L, Sun R, Yao T, Zhou X, Harbarth S. Factors influencing inappropriate use of antibiotics in outpatient and community settings in China: a mixed-methods systematic review. BMJ Glob Health. 2020;5:e003599.CrossRef Lin L, Sun R, Yao T, Zhou X, Harbarth S. Factors influencing inappropriate use of antibiotics in outpatient and community settings in China: a mixed-methods systematic review. BMJ Glob Health. 2020;5:e003599.CrossRef
10.
go back to reference Bakir S, Tanriverdi MH, Gun R, Yorgancilar AE, Yildirim M, Tekbas G, et al. Deep neck space infections: a retrospective review of 173 cases. Am J Otolaryngol. 2012;33:56–63.CrossRef Bakir S, Tanriverdi MH, Gun R, Yorgancilar AE, Yildirim M, Tekbas G, et al. Deep neck space infections: a retrospective review of 173 cases. Am J Otolaryngol. 2012;33:56–63.CrossRef
11.
go back to reference Vieira F, Allen SM, Stocks RM, Thompson JW. Deep neck infection. Otolaryngol Clin North Am. 2008;41:459–83.CrossRef Vieira F, Allen SM, Stocks RM, Thompson JW. Deep neck infection. Otolaryngol Clin North Am. 2008;41:459–83.CrossRef
12.
go back to reference Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S, Federman S, et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res. 2019;29:831–42.CrossRef Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S, Federman S, et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res. 2019;29:831–42.CrossRef
13.
go back to reference Xiao Y. Antimicrobial Stewardship in China: Systems, Actions and Future Strategies. Clin Infect Dis. 2018;67:S135–41.CrossRef Xiao Y. Antimicrobial Stewardship in China: Systems, Actions and Future Strategies. Clin Infect Dis. 2018;67:S135–41.CrossRef
14.
go back to reference Zhou J, Ma X. A survey on antimicrobial stewardship in 116 tertiary hospitals in China. Clin Microbiol Infect. 2019;25:759.e9-759.e14.CrossRef Zhou J, Ma X. A survey on antimicrobial stewardship in 116 tertiary hospitals in China. Clin Microbiol Infect. 2019;25:759.e9-759.e14.CrossRef
15.
go back to reference Lin Y, Gao W, Yue H, Chen W, Liu T, Ye J, et al. A novel risk score for the prediction of airway management in patients with deep neck space abscess: a multicenter retrospective cohort study. J Intensive Care. 2021;9:41.CrossRef Lin Y, Gao W, Yue H, Chen W, Liu T, Ye J, et al. A novel risk score for the prediction of airway management in patients with deep neck space abscess: a multicenter retrospective cohort study. J Intensive Care. 2021;9:41.CrossRef
16.
go back to reference Shen Y, Huang X, Zhang W. Platelet-to-lymphocyte ratio as a prognostic predictor of mortality for sepsis: interaction effect with disease severity-a retrospective study. BMJ Open. 2019;9:e022896.CrossRef Shen Y, Huang X, Zhang W. Platelet-to-lymphocyte ratio as a prognostic predictor of mortality for sepsis: interaction effect with disease severity-a retrospective study. BMJ Open. 2019;9:e022896.CrossRef
17.
go back to reference Kimura A, Miyamoto S, Yamashita T. Clinical predictors of descending necrotizing mediastinitis after deep neck infections. Laryngoscope. 2019;130:E567-572.PubMed Kimura A, Miyamoto S, Yamashita T. Clinical predictors of descending necrotizing mediastinitis after deep neck infections. Laryngoscope. 2019;130:E567-572.PubMed
18.
go back to reference Velhonoja J, Lääveri M, Soukka T, Irjala H, Kinnunen I. Deep neck space infections: an upward trend and changing characteristics. Eur Arch Otorhinolaryngol. 2020;277:863–72.CrossRef Velhonoja J, Lääveri M, Soukka T, Irjala H, Kinnunen I. Deep neck space infections: an upward trend and changing characteristics. Eur Arch Otorhinolaryngol. 2020;277:863–72.CrossRef
19.
go back to reference Park MJ, Kim JW, Kim Y, Lee YS, Roh JL, Choi SH, et al. Initial nutritional status and clinical outcomes in patients with deep neck infection. Clin Exp Otorhinolaryngol. 2018;11:293–300.CrossRef Park MJ, Kim JW, Kim Y, Lee YS, Roh JL, Choi SH, et al. Initial nutritional status and clinical outcomes in patients with deep neck infection. Clin Exp Otorhinolaryngol. 2018;11:293–300.CrossRef
20.
go back to reference Rzepakowska A, Rytel A, Krawczyk P, Osuch-Wojcikiewicz E, Widlak I, Deja M, et al. The factors contributing to efficiency in surgical management of purulent infections of deep neck spaces. Ear Nose Throat J. 2019;29:145561319877281. Rzepakowska A, Rytel A, Krawczyk P, Osuch-Wojcikiewicz E, Widlak I, Deja M, et al. The factors contributing to efficiency in surgical management of purulent infections of deep neck spaces. Ear Nose Throat J. 2019;29:145561319877281.
21.
go back to reference Hidaka H, Yamaguchi T, Hasegawa J, Yano H, Kakuta R, Ozawa D, et al. Clinical and bacteriological influence of diabetes mellitus on deep neck infection: Systematic review and meta-analysis. Head Neck. 2015;37:1536–46.CrossRef Hidaka H, Yamaguchi T, Hasegawa J, Yano H, Kakuta R, Ozawa D, et al. Clinical and bacteriological influence of diabetes mellitus on deep neck infection: Systematic review and meta-analysis. Head Neck. 2015;37:1536–46.CrossRef
22.
go back to reference Escmid Sore Throat Guideline Group, Pelucchi C, Grigoryan L, Galeone C, Esposito S, Huovinen P, et al. Guideline for the management of acute sore throat. Clin Microbiol Infect. 2012; 18:1–28. Escmid Sore Throat Guideline Group, Pelucchi C, Grigoryan L, Galeone C, Esposito S, Huovinen P, et al. Guideline for the management of acute sore throat. Clin Microbiol Infect. 2012; 18:1–28.
23.
go back to reference Powell EL, Powell J, Samuel JR, Wilson JA. A review of the pathogenesis of adult peritonsillar abscess: time for a re-evaluation. J Antimicrob Chemother. 2013;68:1941–50.CrossRef Powell EL, Powell J, Samuel JR, Wilson JA. A review of the pathogenesis of adult peritonsillar abscess: time for a re-evaluation. J Antimicrob Chemother. 2013;68:1941–50.CrossRef
24.
go back to reference Heim N, Jurgensen B, Kramer FJ, Wiedemeyer V. Mapping the microbiological diversity of odontogenic abscess: are we using the right drugs? Clin Oral Investig. 2021;25:187–93.CrossRef Heim N, Jurgensen B, Kramer FJ, Wiedemeyer V. Mapping the microbiological diversity of odontogenic abscess: are we using the right drugs? Clin Oral Investig. 2021;25:187–93.CrossRef
25.
go back to reference Lin RH, Huang CC, Tsou YA, Lin CD, Tsai MH, Chen JH, et al. Correlation between imaging characteristics and microbiology in patients with deep neck infections: a retrospective review of one hundred sixty-one cases. Surg Infect (Larchmt). 2014;15:794–9.CrossRef Lin RH, Huang CC, Tsou YA, Lin CD, Tsai MH, Chen JH, et al. Correlation between imaging characteristics and microbiology in patients with deep neck infections: a retrospective review of one hundred sixty-one cases. Surg Infect (Larchmt). 2014;15:794–9.CrossRef
26.
go back to reference Ohtani K, Shimizu T. Regulation of Toxin Production in Clostridium perfringens. Toxins (Basel). 2016;8:207.CrossRef Ohtani K, Shimizu T. Regulation of Toxin Production in Clostridium perfringens. Toxins (Basel). 2016;8:207.CrossRef
27.
go back to reference Poeschl PW, Crepaz V, Russmueller G, Seemann R, Hirschl AM, Ewers R. Endodontic pathogens causing deep neck space infections: clinical impact of different sampling techniques and antibiotic susceptibility. J Endod. 2011;37:1201–5.CrossRef Poeschl PW, Crepaz V, Russmueller G, Seemann R, Hirschl AM, Ewers R. Endodontic pathogens causing deep neck space infections: clinical impact of different sampling techniques and antibiotic susceptibility. J Endod. 2011;37:1201–5.CrossRef
28.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRef
29.
go back to reference Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20:341–55.CrossRef Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20:341–55.CrossRef
30.
go back to reference Brook I. Anaerobic bacteria in upper respiratory tract and head and neck infections: microbiology and treatment. Anaerobe. 2012;18:214–20.CrossRef Brook I. Anaerobic bacteria in upper respiratory tract and head and neck infections: microbiology and treatment. Anaerobe. 2012;18:214–20.CrossRef
31.
go back to reference Boyanova L, Kolarov R, Gergova G, Deliverska E, Madjarov J, Marinov M, et al. Anaerobic bacteria in 118 patients with deep-space head and neck infections from the University Hospital of Maxillofacial Surgery, Sofia. Bulgaria J Med Microbiol. 2006;55:1285–9.CrossRef Boyanova L, Kolarov R, Gergova G, Deliverska E, Madjarov J, Marinov M, et al. Anaerobic bacteria in 118 patients with deep-space head and neck infections from the University Hospital of Maxillofacial Surgery, Sofia. Bulgaria J Med Microbiol. 2006;55:1285–9.CrossRef
32.
go back to reference Hirai T, Kimura S, Mori N. Head and neck infections caused by Streptococcus milleri group: an analysis of 17 cases. Auris Nasus Larynx. 2005;32:55–8.CrossRef Hirai T, Kimura S, Mori N. Head and neck infections caused by Streptococcus milleri group: an analysis of 17 cases. Auris Nasus Larynx. 2005;32:55–8.CrossRef
Metadata
Title
Bacteriological analysis based on disease severity and clinical characteristics in patients with deep neck space abscess
Authors
Wenxiang Gao
Yu Lin
Huijun Yue
Weixiong Chen
Tianrun Liu
Jin Ye
Qian Cai
Fei Ye
Long He
Xingqiang Xie
Guoping Xiong
Jianhui Wu
Bin Wang
Weiping Wen
Wenbin Lei
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Antibiotic
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07259-9

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue