Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Research article

Sensitivity and specificity of two WHO approved SARS-CoV2 antigen assays in detecting patients with SARS-CoV2 infection

Authors: Chandima Jeewandara, Dinuka Guruge, Pradeep Darshana Pushpakumara, Deshan Madhusanka, Tibutius Thanesh Jayadas, Indika Prasad Chaturanga, Inoka Sepali Aberathna, Saubhagya Danasekara, Thilagaraj Pathmanathan, Deshni Jayathilaka, Gayasha Somathilaka, Heshan Kuruppu, Laksiri Gomes, Vitjith Gunasekara, Ruwan Wijayamuni, Graham S. Ogg, Gathsaurie Neelika Malavige

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

SARS-CoV-2 rapid antigen (Ag) detection kits are widely used in addition to quantitative reverse transcription PCR PCR (RT-qPCR), as they are cheaper with a rapid turnaround time. As there are many concerns regarding their sensitivity and specificity, in different settings, we evaluated two WHO approved rapid Ag kits in a large cohort of Sri Lankan individuals.

Methods

Paired nasopharangeal swabs were obtained from 4786 participants for validation of the SD-Biosensor rapid Ag assay and 3325 for the Abbott rapid Ag assay, in comparison to RT-qPCR. A short questionnaire was used to record symptoms at the time of testing, and blood samples were obtained from 2721 of them for detection of SARS-CoV-2 specific antibodies.

Results

The overall sensitivity of the SD-Biosensor Ag kit was 36.5% and the Abbott Ag test was 50.76%. The Abbott Ag test showed specificity of 99.4% and the SD-Biosensor Ag test 97.5%. At Ct values < 25, the sensitivity was 71.3% to 76.6% for the SD-Biosensor Ag test and 77.3% to 88.9% for the Abbott Ag test. The Ct values for all genes (RdRP, S, E and N) tested with all RT-qPCR kits were significantly lower for the positive results of the Abbott Ag test compared to the SD-Biosensor test. 209 (48.04%) individuals who had antibodies gave a positive RT-qPCR result, and antibody positivity rates were higher at Ct values > 30 (46.1 to 82.9%). 32.1% of those who gave a positive result with the SD-Biosensor Ag test and 26.3% of those who gave positive results with the Abbott Ag test had SARS-CoV-2 antibodies at the time of detection.

Conclusions

Both rapid Ag tests appeared to be highly sensitive in detecting individuals at lower Ct values, in a community setting in Sri Lanka, but it will be important to further establish the relationship to infectivity.
Literature
1.
go back to reference Tang YW, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol. 2020;58(6): e00512-20.CrossRef Tang YW, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol. 2020;58(6): e00512-20.CrossRef
2.
go back to reference Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, et al. Diagnostics for SARS-CoV-2 infections. Nat Mater. 2021;20(5):593–605.CrossRef Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, et al. Diagnostics for SARS-CoV-2 infections. Nat Mater. 2021;20(5):593–605.CrossRef
3.
go back to reference Mina MJ, Peto TE, Garcia-Finana M, Semple MG, Buchan IE. Clarifying the evidence on SARS-CoV-2 antigen rapid tests in public health responses to COVID-19. Lancet. 2021;397(10283):1425–7.CrossRef Mina MJ, Peto TE, Garcia-Finana M, Semple MG, Buchan IE. Clarifying the evidence on SARS-CoV-2 antigen rapid tests in public health responses to COVID-19. Lancet. 2021;397(10283):1425–7.CrossRef
4.
go back to reference Yoshikawa R, Abe H, Igasaki Y, Negishi S, Goto H, Yasuda J. Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. PLoS Negl Trop Dis. 2020;14(11): e0008855.CrossRef Yoshikawa R, Abe H, Igasaki Y, Negishi S, Goto H, Yasuda J. Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. PLoS Negl Trop Dis. 2020;14(11): e0008855.CrossRef
5.
go back to reference Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–4.CrossRef Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–4.CrossRef
6.
go back to reference Chaimayo C, Kaewnaphan B, Tanlieng N, Athipanyasilp N, Sirijatuphat R, Chayakulkeeree M, Angkasekwinai N, Sutthent R, Puangpunngam N, Tharmviboonsri T, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol J. 2020;17(1):177.CrossRef Chaimayo C, Kaewnaphan B, Tanlieng N, Athipanyasilp N, Sirijatuphat R, Chayakulkeeree M, Angkasekwinai N, Sutthent R, Puangpunngam N, Tharmviboonsri T, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol J. 2020;17(1):177.CrossRef
7.
go back to reference Centre for Disease Control U. Interim guidance for antigen testing for SARS-CoV-2. In: National center for immunization and respiratory diseases (NCIRD), Division of Viral Diseases; 2020. Centre for Disease Control U. Interim guidance for antigen testing for SARS-CoV-2. In: National center for immunization and respiratory diseases (NCIRD), Division of Viral Diseases; 2020.
8.
go back to reference Peeling RW, Olliaro PL, Boeras DI, Fongwen N. Scaling up COVID-19 rapid antigen tests: promises and challenges. Lancet Infect Dis. 2021;21(9):e290–5.CrossRef Peeling RW, Olliaro PL, Boeras DI, Fongwen N. Scaling up COVID-19 rapid antigen tests: promises and challenges. Lancet Infect Dis. 2021;21(9):e290–5.CrossRef
9.
go back to reference WHO. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays. In: Interim guidance. Emergencies Preparedness, WHO Headquarters (HQ); 2020. p. 9. WHO. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays. In: Interim guidance. Emergencies Preparedness, WHO Headquarters (HQ); 2020. p. 9.
10.
go back to reference FDA. Genetic variants of SARS-CoV-2 may lead to false negative results with molecular tests for detection of SARS-CoV-2—letter to Clinical Laboratory Staff and Health Care Providers. FDA; 2021. FDA. Genetic variants of SARS-CoV-2 may lead to false negative results with molecular tests for detection of SARS-CoV-2—letter to Clinical Laboratory Staff and Health Care Providers. FDA; 2021.
11.
go back to reference Weidner L, Gansdorfer S, Unterweger S, Weseslindtner L, Drexler C, Farcet M, Witt V, Schistal E, Schlenke P, Kreil TR, et al. Quantification of SARS-CoV-2 antibodies with eight commercially available immunoassays. J Clin Virol. 2020;129: 104540.CrossRef Weidner L, Gansdorfer S, Unterweger S, Weseslindtner L, Drexler C, Farcet M, Witt V, Schistal E, Schlenke P, Kreil TR, et al. Quantification of SARS-CoV-2 antibodies with eight commercially available immunoassays. J Clin Virol. 2020;129: 104540.CrossRef
13.
go back to reference Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ. 2020;370: m3325.CrossRef Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ. 2020;370: m3325.CrossRef
14.
go back to reference Singanayagam A, Patel M, Charlett A, Lopez Bernal J, Saliba V, Ellis J, Ladhani S, Zambon M, Gopal R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill. 2020;25(32):2001483.CrossRef Singanayagam A, Patel M, Charlett A, Lopez Bernal J, Saliba V, Ellis J, Ladhani S, Zambon M, Gopal R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill. 2020;25(32):2001483.CrossRef
15.
go back to reference Jeewandara C, Jayathilaka D, Gomes L, Wijewickrama A, Narangoda E, Idampitiya D, Guruge D, Wijayamuni R, Manilgama S, Ogg GS, et al. SARS-CoV-2 neutralizing antibodies in patients with varying severity of acute COVID-19 illness. Sci Rep. 2021;11(1):2062.CrossRef Jeewandara C, Jayathilaka D, Gomes L, Wijewickrama A, Narangoda E, Idampitiya D, Guruge D, Wijayamuni R, Manilgama S, Ogg GS, et al. SARS-CoV-2 neutralizing antibodies in patients with varying severity of acute COVID-19 illness. Sci Rep. 2021;11(1):2062.CrossRef
16.
go back to reference Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13–22.CrossRef Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13–22.CrossRef
17.
go back to reference van Kampen JJA, van de Vijver D, Fraaij PLA, Haagmans BL, Lamers MM, Okba N, van den Akker JPC, Endeman H, Gommers D, Cornelissen JJ, et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021;12(1):267.CrossRef van Kampen JJA, van de Vijver D, Fraaij PLA, Haagmans BL, Lamers MM, Okba N, van den Akker JPC, Endeman H, Gommers D, Cornelissen JJ, et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021;12(1):267.CrossRef
18.
go back to reference Perera R, Tso E, Tsang OTY, Tsang DNC, Fung K, Leung YWY, Chin AWH, Chu DKW, Cheng SMS, Poon LLM, et al. SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease. Emerg Infect Dis. 2020;26(11):2701–4.CrossRef Perera R, Tso E, Tsang OTY, Tsang DNC, Fung K, Leung YWY, Chin AWH, Chu DKW, Cheng SMS, Poon LLM, et al. SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease. Emerg Infect Dis. 2020;26(11):2701–4.CrossRef
20.
go back to reference WHO. Antigen-detection in the diagnosis of SARS-CoV-2 infection. Emergencies Preparedness, WHO Headquarters (HQ); 2021. p. 20. WHO. Antigen-detection in the diagnosis of SARS-CoV-2 infection. Emergencies Preparedness, WHO Headquarters (HQ); 2021. p. 20.
21.
go back to reference Treggiari D, Piubelli C, Caldrer S, Mistretta M, Ragusa A, Orza P, Pajola B, Piccoli D, Conti A, Lorenzi C, et al. SARS-CoV-2 rapid antigen test in comparison to RT-PCR targeting different genes: a real-life evaluation among unselected patients in a regional hospital of Italy. J Med Virol. 2021;94(3):1190–5.CrossRef Treggiari D, Piubelli C, Caldrer S, Mistretta M, Ragusa A, Orza P, Pajola B, Piccoli D, Conti A, Lorenzi C, et al. SARS-CoV-2 rapid antigen test in comparison to RT-PCR targeting different genes: a real-life evaluation among unselected patients in a regional hospital of Italy. J Med Virol. 2021;94(3):1190–5.CrossRef
22.
go back to reference Jegerlehner S, Suter-Riniker F, Jent P, Bittel P, Nagler M. Diagnostic accuracy of a SARS-CoV-2 rapid antigen test in real-life clinical settings. Int J Infect Dis. 2021;109:118–22.CrossRef Jegerlehner S, Suter-Riniker F, Jent P, Bittel P, Nagler M. Diagnostic accuracy of a SARS-CoV-2 rapid antigen test in real-life clinical settings. Int J Infect Dis. 2021;109:118–22.CrossRef
23.
go back to reference Parvu V, Gary DS, Mann J, Lin YC, Mills D, Cooper L, Andrews JC, Manabe YC, Pekosz A, Cooper CK. Factors that influence the reported sensitivity of rapid antigen testing for SARS-CoV-2. Front Microbiol. 2021;12: 714242.CrossRef Parvu V, Gary DS, Mann J, Lin YC, Mills D, Cooper L, Andrews JC, Manabe YC, Pekosz A, Cooper CK. Factors that influence the reported sensitivity of rapid antigen testing for SARS-CoV-2. Front Microbiol. 2021;12: 714242.CrossRef
24.
go back to reference Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–9.CrossRef Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–9.CrossRef
25.
go back to reference Widders A, Broom A, Broom J. SARS-CoV-2: the viral shedding vs infectivity dilemma. Infect Dis Health. 2020;25(3):210–5.CrossRef Widders A, Broom A, Broom J. SARS-CoV-2: the viral shedding vs infectivity dilemma. Infect Dis Health. 2020;25(3):210–5.CrossRef
26.
27.
go back to reference Kampf G, Lemmen S, Suchomel M. Ct values and infectivity of SARS-CoV-2 on surfaces. Lancet Infect Dis. 2020;21(6): e141.CrossRef Kampf G, Lemmen S, Suchomel M. Ct values and infectivity of SARS-CoV-2 on surfaces. Lancet Infect Dis. 2020;21(6): e141.CrossRef
28.
go back to reference Rao SN, Manissero D, Steele VR, Pareja J. A systematic review of the clinical utility of cycle threshold values in the context of COVID-19. Infect Dis Ther. 2020;9(3):573–86.CrossRef Rao SN, Manissero D, Steele VR, Pareja J. A systematic review of the clinical utility of cycle threshold values in the context of COVID-19. Infect Dis Ther. 2020;9(3):573–86.CrossRef
29.
go back to reference Walsh KA, Spillane S, Comber L, Cardwell K, Harrington P, Connell J, Teljeur C, Broderick N, de Gascun CF, Smith SM, et al. The duration of infectiousness of individuals infected with SARS-CoV-2. J Infect. 2020;81(6):847–56.CrossRef Walsh KA, Spillane S, Comber L, Cardwell K, Harrington P, Connell J, Teljeur C, Broderick N, de Gascun CF, Smith SM, et al. The duration of infectiousness of individuals infected with SARS-CoV-2. J Infect. 2020;81(6):847–56.CrossRef
30.
go back to reference Jeewandara C, Guruge D, Jayathilaka D, Deshan Madhusanka PA, Pushpakumara PD, Tanussiya Ramu S, Sepali Aberathna I, Saubhagya Rasikangani Danasekara DR, Pathmanathan T, Gunatilaka B, et al. Transmission dynamics, clinical characteristics and sero-surveillance in the COVID-19 outbreak in a population dense area of Colombo Sri Lanka April–May 2020. PLoS ONE. 2021;16(11): e0257548.CrossRef Jeewandara C, Guruge D, Jayathilaka D, Deshan Madhusanka PA, Pushpakumara PD, Tanussiya Ramu S, Sepali Aberathna I, Saubhagya Rasikangani Danasekara DR, Pathmanathan T, Gunatilaka B, et al. Transmission dynamics, clinical characteristics and sero-surveillance in the COVID-19 outbreak in a population dense area of Colombo Sri Lanka April–May 2020. PLoS ONE. 2021;16(11): e0257548.CrossRef
Metadata
Title
Sensitivity and specificity of two WHO approved SARS-CoV2 antigen assays in detecting patients with SARS-CoV2 infection
Authors
Chandima Jeewandara
Dinuka Guruge
Pradeep Darshana Pushpakumara
Deshan Madhusanka
Tibutius Thanesh Jayadas
Indika Prasad Chaturanga
Inoka Sepali Aberathna
Saubhagya Danasekara
Thilagaraj Pathmanathan
Deshni Jayathilaka
Gayasha Somathilaka
Heshan Kuruppu
Laksiri Gomes
Vitjith Gunasekara
Ruwan Wijayamuni
Graham S. Ogg
Gathsaurie Neelika Malavige
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07240-6

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue