Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Care | Research article

High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department

Authors: Kirby Tong-Minh, Yuri van der Does, Susanna Engelen, Evelien de Jong, Christian Ramakers, Diederik Gommers, Eric van Gorp, Henrik Endeman

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Patients with a severe COVID-19 infection often require admission at an intensive care unit (ICU) when they develop acute respiratory distress syndrome (ARDS). Hyperinflammation plays an important role in the development of ARDS in COVID-19. Procalcitonin (PCT) is a biomarker which may be a predictor of hyperinflammation. When patients with COVID-19 are in the emergency department (ED), elevated PCT levels could be associated with severe COVID-19 infections. The goal of this study is to investigate the association between PCT levels and severe COVID-19 infections in the ED.

Methods

This was a retrospective cohort study including patients with a confirmed COVID-19 infection who visited the ED of Erasmus Medical Center in Rotterdam, the Netherlands, between March and December 2020. The primary outcome was a severe COVID-19 infection, which was defined as patients who required ICU admission, all cause in-hospital mortality and mortality within 30 days after hospital discharge. PCT levels were measured during the ED visit. We used logistic regression to calculate the odds ratio (OR) with 95% confidence interval (95% CI) and corresponding area under the curve (AUC) of PCT on a severe COVID-19 infection, adjusting for bacterial coinfections, age, sex, comorbidities, C-reactive protein (CRP) and D-dimer.

Results

A total of 332 patients were included in the final analysis of this study, of which 105 patients reached the composite outcome of a severe COVID-19 infection. PCT showed an unadjusted OR of 4.19 (95%CI: 2.52–7.69) on a severe COVID-19 infection with an AUC of 0.82 (95% CI: 0.76–0.87). Corrected for bacterial coinfection, the OR of PCT was 4.05 (95% CI: 2.45–7.41). Adjusted for sex, bacterial coinfection, age any comorbidity, CRP and D-dimer, elevated PCT levels were still significantly associated with a severe COVID-19 infection with an adjusted OR of 2.11 (95% CI: 1.36–3.61). The AUC of this multivariable model was 0.85 (95%CI: 0.81–0.90).

Conclusion

High PCT levels are associated with high rates of severe COVID-19 infections in patients with a COVID-19 infection in the ED. The routine measurement of PCT in patients with a COVID-19 infection in the ED may assist physicians in the clinical decision making process regarding ICU disposition.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health O. WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020. Geneva: Switzerland; 2020. World Health O. WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020. Geneva: Switzerland; 2020.
3.
go back to reference Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8(12):1201–8.CrossRef Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8(12):1201–8.CrossRef
5.
go back to reference Manson JJ, Crooks C, Naja M, Ledlie A, Goulden B, Liddle T, et al. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol. 2020;2(10):e594–602.CrossRef Manson JJ, Crooks C, Naja M, Ledlie A, Goulden B, Liddle T, et al. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol. 2020;2(10):e594–602.CrossRef
6.
go back to reference Danwang C, Endomba FT, Nkeck JR, Wouna DLA, Robert A, Noubiap JJ. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark Res. 2020;8:37.CrossRef Danwang C, Endomba FT, Nkeck JR, Wouna DLA, Robert A, Noubiap JJ. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark Res. 2020;8:37.CrossRef
7.
go back to reference Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis. 2018;18(1):95–107.CrossRef Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis. 2018;18(1):95–107.CrossRef
8.
go back to reference van der Does Y, Limper M, Jie KE, Schuit SCE, Jansen H, Pernot N, et al. Procalcitonin-guided antibiotic therapy in patients with fever in a general emergency department population: a multicentre non-inferiority randomized clinical trial (HiTEMP study). Clin Microbiol Infect. 2018;24(12):1282–9.CrossRef van der Does Y, Limper M, Jie KE, Schuit SCE, Jansen H, Pernot N, et al. Procalcitonin-guided antibiotic therapy in patients with fever in a general emergency department population: a multicentre non-inferiority randomized clinical trial (HiTEMP study). Clin Microbiol Infect. 2018;24(12):1282–9.CrossRef
9.
go back to reference Huang DT, Yealy DM, Filbin MR, Brown AM, Chang CH, Doi Y, et al. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med. 2018;379(3):236–49.CrossRef Huang DT, Yealy DM, Filbin MR, Brown AM, Chang CH, Doi Y, et al. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med. 2018;379(3):236–49.CrossRef
10.
go back to reference Maruna P, Nedelnikova K, Gurlich R. Physiology and genetics of procalcitonin. Physiol Res. 2000;49(Suppl 1):S57-61.PubMed Maruna P, Nedelnikova K, Gurlich R. Physiology and genetics of procalcitonin. Physiol Res. 2000;49(Suppl 1):S57-61.PubMed
11.
go back to reference Linscheid P, Seboek D, Nylen ES, Langer I, Schlatter M, Becker KL, et al. In vitro and in vivo calcitonin I gene expression in parenchymal cells: a novel product of human adipose tissue. Endocrinology. 2003;144(12):5578–84.CrossRef Linscheid P, Seboek D, Nylen ES, Langer I, Schlatter M, Becker KL, et al. In vitro and in vivo calcitonin I gene expression in parenchymal cells: a novel product of human adipose tissue. Endocrinology. 2003;144(12):5578–84.CrossRef
12.
go back to reference Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–44.CrossRef Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–44.CrossRef
13.
go back to reference Camporota L, Chiumello D, Busana M, Gattinoni L, Marini JJ. Pathophysiology of COVID-19-associated acute respiratory distress syndrome. Lancet Respir Med. 2021;9(1): e1.CrossRef Camporota L, Chiumello D, Busana M, Gattinoni L, Marini JJ. Pathophysiology of COVID-19-associated acute respiratory distress syndrome. Lancet Respir Med. 2021;9(1): e1.CrossRef
14.
go back to reference Hoeboer SH, van der Geest PJ, Nieboer D, Groeneveld AB. The diagnostic accuracy of procalcitonin for bacteraemia: a systematic review and meta-analysis. Clin Microbiol Infect. 2015;21(5):474–81.CrossRef Hoeboer SH, van der Geest PJ, Nieboer D, Groeneveld AB. The diagnostic accuracy of procalcitonin for bacteraemia: a systematic review and meta-analysis. Clin Microbiol Infect. 2015;21(5):474–81.CrossRef
15.
go back to reference Hu R, Han C, Pei S, Yin M, Chen X. Procalcitonin levels in COVID-19 patients. Int J Antimicrob Agents. 2020;56(2): 106051.CrossRef Hu R, Han C, Pei S, Yin M, Chen X. Procalcitonin levels in COVID-19 patients. Int J Antimicrob Agents. 2020;56(2): 106051.CrossRef
16.
go back to reference Heidari-Beni F, Vahedian-Azimi A, Shojaei S, Rahimi-Bashar F, Shahriary A, Johnston TP, et al. The level of procalcitonin in severe COVID-19 patients: a systematic review and meta-analysis. Adv Exp Med Biol. 2021;1321:277–86.CrossRef Heidari-Beni F, Vahedian-Azimi A, Shojaei S, Rahimi-Bashar F, Shahriary A, Johnston TP, et al. The level of procalcitonin in severe COVID-19 patients: a systematic review and meta-analysis. Adv Exp Med Biol. 2021;1321:277–86.CrossRef
17.
go back to reference Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020;14:1753466620937175.PubMedPubMedCentral Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020;14:1753466620937175.PubMedPubMedCentral
18.
go back to reference Nazerian P, Gagliano M, Suardi LR, Fanelli A, Rossolini GM, Grifoni S, et al. Procalcitonin for the differential diagnosis of COVID-19 in the emergency department. Prospective monocentric study. Intern Emerg Med. 2021. Nazerian P, Gagliano M, Suardi LR, Fanelli A, Rossolini GM, Grifoni S, et al. Procalcitonin for the differential diagnosis of COVID-19 in the emergency department. Prospective monocentric study. Intern Emerg Med. 2021.
19.
go back to reference Surme S, Buyukyazgan A, Bayramlar OF, Cinar AK, Copur B, Zerdali E, et al. Predictors of intensive care unit admission or death in patients with coronavirus disease 2019 pneumonia in Istanbul, Turkey. Jpn J Infect Dis. 2021. Surme S, Buyukyazgan A, Bayramlar OF, Cinar AK, Copur B, Zerdali E, et al. Predictors of intensive care unit admission or death in patients with coronavirus disease 2019 pneumonia in Istanbul, Turkey. Jpn J Infect Dis. 2021.
20.
go back to reference Kaal A, Snel L, Dane M, van Burgel N, Ottens T, Broekman W, et al. Diagnostic yield of bacteriological tests and predictors of severe outcome in adult patients with COVID-19 presenting to the emergency department. Emerg Med J. 2021;38(9):685–91.CrossRef Kaal A, Snel L, Dane M, van Burgel N, Ottens T, Broekman W, et al. Diagnostic yield of bacteriological tests and predictors of severe outcome in adult patients with COVID-19 presenting to the emergency department. Emerg Med J. 2021;38(9):685–91.CrossRef
21.
go back to reference Gautam S, Cohen AJ, Stahl Y, Valda Toro P, Young GM, Datta R, et al. Severe respiratory viral infection induces procalcitonin in the absence of bacterial pneumonia. Thorax. 2020;75(11):974–81.CrossRef Gautam S, Cohen AJ, Stahl Y, Valda Toro P, Young GM, Datta R, et al. Severe respiratory viral infection induces procalcitonin in the absence of bacterial pneumonia. Thorax. 2020;75(11):974–81.CrossRef
22.
go back to reference Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, et al. Effectiveness of COVID-19 vaccines in ambulatory and inpatient care settings. N Engl J Med. 2021;385(15):1355–71.CrossRef Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, et al. Effectiveness of COVID-19 vaccines in ambulatory and inpatient care settings. N Engl J Med. 2021;385(15):1355–71.CrossRef
Metadata
Title
High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department
Authors
Kirby Tong-Minh
Yuri van der Does
Susanna Engelen
Evelien de Jong
Christian Ramakers
Diederik Gommers
Eric van Gorp
Henrik Endeman
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07144-5

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue