Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Research article

Impact of pre-event testing and quarantine on reducing the risk of COVID-19 epidemic rebound: a modelling study

Authors: Ngai Sze Wong, Shui Shan Lee, Kate M. Mitchell, Eng-kiong Yeoh, Cheng Wang

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

With the evolving growth of the COVID-19 epidemic, travel restriction policies would need to be adjusted accordingly. Prohibition of mass event may be relaxed for social and economic benefits when virus transmission stops but could bear the risk of epidemic rebound. Against the background of the varied SARS-CoV-2 prevalence internationally, we modelled the potential impacts of pre-event interventions on epidemic risk of holding a mass event when COVID-19 is under control.

Methods

We developed a mathematical model of SARS-CoV-2 transmission in Guangdong Province, China, where local virus transmission ceased to occur. A large-scale international trade fair was assumed to be held, with influx of people from overseas and rest of China over a short period of time, who participated for 2-week. Scenarios of pre-event intervention (none, quarantine arrangement and polymerase chain reaction (PCR) testing for participants) were compared. The influence of contact pattern, SARS-CoV-2 prevalence outside the province and China, and testing coverage were examined in sensitivity analyses.

Results

In basecase scenario (no event), the epidemic has been under control since March 2020. The event would lead to the detection of 1% more confirmed cases by 31 July when community contact rate increases to pre-epidemic level. In event scenario without additional interventions, there would be 599 (93%) more new infections comparing with basecase scenario. To avert new infections, quarantining all participants before the event would be the most effective strategy, followed by quarantining all overseas participants and testing all other participants, and testing all participants before the event and on day 7. However, testing strategy is likely to be affected by the SARS-CoV-2 prevalence outside the event province.

Conclusions

Pre-event interventions are effective for reducing the risk of epidemic rebound caused by an international large-scale event. Universal testing for participants is likely to be an effective and feasible intervention.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wong NS, Lee SS, Kwan TH, Yeoh EK. Settings of virus exposure and their implications in the propagation of transmission networks in a COVID-19 outbreak. Lancet Reg Health Western Pacific. 2020;4:100052.CrossRef Wong NS, Lee SS, Kwan TH, Yeoh EK. Settings of virus exposure and their implications in the propagation of transmission networks in a COVID-19 outbreak. Lancet Reg Health Western Pacific. 2020;4:100052.CrossRef
3.
go back to reference Pung R, Chiew CJ, Young BE, Chin S, Chen MI, Clapham HE, et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet. 2020;395:1039–46.CrossRef Pung R, Chiew CJ, Young BE, Chin S, Chen MI, Clapham HE, et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet. 2020;395:1039–46.CrossRef
4.
go back to reference Che Mat NF, Edinur HA, Abdul Razab MKA, Safuan S. A single mass gathering resulted in massive transmission of COVID-19 infections in Malaysia with further international spread. J Travel Med. 2020;27:taaa059.CrossRef Che Mat NF, Edinur HA, Abdul Razab MKA, Safuan S. A single mass gathering resulted in massive transmission of COVID-19 infections in Malaysia with further international spread. J Travel Med. 2020;27:taaa059.CrossRef
5.
go back to reference Barnes M, Sax PE. Challenges of “Return to Work” in an ongoing pandemic. N Engl J Med. 2020;383(8):779–86.CrossRef Barnes M, Sax PE. Challenges of “Return to Work” in an ongoing pandemic. N Engl J Med. 2020;383(8):779–86.CrossRef
7.
go back to reference Petersen E, Wasserman S, Lee SS, Go U, Holmes AH, Al-Abri S, et al. COVID-19—we urgently need to start developing an exit strategy. Int J Infect Dis. 2020;96:233–9.CrossRef Petersen E, Wasserman S, Lee SS, Go U, Holmes AH, Al-Abri S, et al. COVID-19—we urgently need to start developing an exit strategy. Int J Infect Dis. 2020;96:233–9.CrossRef
8.
go back to reference Diseases TLI. Air travel in the time of COVID-19. Lancet Infect Dis. 2020;20:993.CrossRef Diseases TLI. Air travel in the time of COVID-19. Lancet Infect Dis. 2020;20:993.CrossRef
9.
go back to reference Gilman RT, Mahroof-Shaffi S, Harkensee C, Chamberlain AT. Modelling interventions to control COVID-19 outbreaks in a refugee camp. BMJ Glob Health. 2020;5:e003727.CrossRef Gilman RT, Mahroof-Shaffi S, Harkensee C, Chamberlain AT. Modelling interventions to control COVID-19 outbreaks in a refugee camp. BMJ Glob Health. 2020;5:e003727.CrossRef
10.
go back to reference Dickens BL, Koo JR, Lim JT, Park M, Quaye S, Sun H, et al. Modelling lockdown and exit strategies for COVID-19 in Singapore. Lancet Reg Health Western Pacific. 2020;1:100004.CrossRef Dickens BL, Koo JR, Lim JT, Park M, Quaye S, Sun H, et al. Modelling lockdown and exit strategies for COVID-19 in Singapore. Lancet Reg Health Western Pacific. 2020;1:100004.CrossRef
13.
go back to reference Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;S1473–3099:30287–95. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;S1473–3099:30287–95.
14.
go back to reference Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25:2000180.CrossRef Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25:2000180.CrossRef
15.
16.
go back to reference Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199–207.CrossRef Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199–207.CrossRef
19.
go back to reference Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature. 2020;585(7825):410–3.CrossRef Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature. 2020;585(7825):410–3.CrossRef
20.
go back to reference Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health. 2020;5:e375–85.CrossRef Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health. 2020;5:e375–85.CrossRef
21.
go back to reference Nussbaumer-Streit B, Mayr V, Dobrescu AI, Chapman A, Persad E, Klerings I, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev. 2020;4:CD013574.PubMed Nussbaumer-Streit B, Mayr V, Dobrescu AI, Chapman A, Persad E, Klerings I, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev. 2020;4:CD013574.PubMed
22.
go back to reference Hou C, Chen J, Zhou Y, Hua L, Yuan J, He S, et al. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): a well-mixed SEIR model analysis. J Med Virol. 2020;92(7):841–8.CrossRef Hou C, Chen J, Zhou Y, Hua L, Yuan J, He S, et al. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): a well-mixed SEIR model analysis. J Med Virol. 2020;92(7):841–8.CrossRef
23.
go back to reference Goscé L, Phillips PA, Spinola P, Gupta DRK, Abubakar PI. Modelling SARS-COV2 spread in London: approaches to lift the lockdown. J Infect. 2020;S0163–4453:30315–7. Goscé L, Phillips PA, Spinola P, Gupta DRK, Abubakar PI. Modelling SARS-COV2 spread in London: approaches to lift the lockdown. J Infect. 2020;S0163–4453:30315–7.
24.
go back to reference Peto J, Alwan NA, Godfrey KM, Burgess RA, Hunter DJ, Riboli E, et al. Universal weekly testing as the UK COVID-19 lockdown exit strategy. Lancet. 2020;395:1420–1.CrossRef Peto J, Alwan NA, Godfrey KM, Burgess RA, Hunter DJ, Riboli E, et al. Universal weekly testing as the UK COVID-19 lockdown exit strategy. Lancet. 2020;395:1420–1.CrossRef
25.
go back to reference Jarvis CI, Van Zandvoort K, Gimma A, Prem K, CMMID COVID-19 working group, Klepac P, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18:124.CrossRef Jarvis CI, Van Zandvoort K, Gimma A, Prem K, CMMID COVID-19 working group, Klepac P, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18:124.CrossRef
26.
go back to reference Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada [published online ahead of print, 2020 Apr 8]. CMAJ. 2020;cmaj.200476. Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada [published online ahead of print, 2020 Apr 8]. CMAJ. 2020;cmaj.200476.
27.
go back to reference Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect Dis. 2020;S1473–3099:30553–63. Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect Dis. 2020;S1473–3099:30553–63.
Metadata
Title
Impact of pre-event testing and quarantine on reducing the risk of COVID-19 epidemic rebound: a modelling study
Authors
Ngai Sze Wong
Shui Shan Lee
Kate M. Mitchell
Eng-kiong Yeoh
Cheng Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06963-2

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue