Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Human Immunodeficiency Virus | Research article

Application of quantile mixed-effects model in modeling CD4 count from HIV-infected patients in KwaZulu-Natal South Africa

Authors: Ashenafi A. Yirga, Sileshi F. Melesse, Henry G. Mwambi, Dawit G. Ayele

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

The CD4 cell count signifies the health of an individual’s immune system. The use of data-driven models enables clinicians to accurately interpret potential information, examine the progression of CD4 count, and deal with patient heterogeneity due to patient-specific effects. Quantile-based regression models can be used to illustrate the entire conditional distribution of an outcome and identify various covariates effects at the respective location.

Methods

This study uses the quantile mixed-effects model that assumes an asymmetric Laplace distribution for the error term. The model also incorporated multiple random effects to consider the correlation among observations. The exact maximum likelihood estimation was implemented using the Stochastic Approximation of the Expectation–Maximization algorithm to estimate the parameters. This study used the Centre of the AIDS Programme of Research in South Africa (CAPRISA) 002 Acute Infection Study data. In this study, the response variable is the longitudinal CD4 count from HIV-infected patients who were initiated on Highly Active Antiretroviral Therapy (HAART), and the explanatory variables are relevant baseline characteristics of the patients.

Results

The analysis obtained robust parameters estimates at various locations of the conditional distribution. For instance, our result showed that baseline BMI (at \(\tau =\) 0.05: \({\widehat{\beta }}_{4}=0.056, \mathrm{p-}\mathrm{value}<0.0064; \mathrm{at }\,\tau = 0.5: {\widehat{\beta }}_{4}=0.082, \mathrm{p-}\mathrm{value}<0.0025; \mathrm{at}\,\tau = 0.95: {\widehat{\beta }}_{4}=0.145,\mathrm{p-}\mathrm{value}<0.0000\)), baseline viral load (at \(\tau =\) 0.05: \({\widehat{\beta }}_{5}\) \(=-0.564, \mathrm{p-}\mathrm{value}<0.0000; \mathrm{at}\,\tau = 0. 5: {\widehat{\beta }}_{5}=-0.641, \mathrm{p-}\mathrm{value}<0.0000; \mathrm{at }\,\tau = 0.95: {\widehat{\beta }}_{5}=-0.739,\mathrm{p-}\mathrm{value}<0.0000\)), and post-HAART initiation (at \(\tau =\) 0.05: \({\widehat{\beta }}_{6}=1.683,\mathrm{p-}\mathrm{value}<0.0000; \mathrm{at}\,\tau = 0.5: {\widehat{\beta }}_{6}=2.560,\mathrm{p-}\mathrm{value}<0.0000; \mathrm{at }\,\tau =0.95: {\widehat{\beta }}_{6}=2.287,\mathrm{p-}\mathrm{value}<0.0000\)) were major significant factors of CD4 count across fitted quantiles.

Conclusions

CD4 cell recovery in response to post-HAART initiation across all fitted quantile levels was observed. Compared to HIV-infected patients with low viral load levels at baseline, HIV-infected patients enrolled in the treatment with a high viral load level at baseline showed a significant negative effect on CD4 cell counts at upper quantiles. HIV-infected patients registered with high BMI at baseline had improved CD4 cell count after treatment, but physicians should not ignore this group of patients clinically. It is also crucial for physicians to closely monitor patients with a low BMI before and after starting HAART.
Appendix
Available only for authorised users
Literature
3.
go back to reference Davino C, Furno M, Vistocco D. Quantile regression: theory and applications, vol. 988. Hoboken: Wiley; 2013. Davino C, Furno M, Vistocco D. Quantile regression: theory and applications, vol. 988. Hoboken: Wiley; 2013.
4.
go back to reference Girma S, Görg H. Foreign direct investment, spillovers and absorptive capacity: evidence from quantile regressions. Bundesbank Series 1 Discussion Paper. 2005. Girma S, Görg H. Foreign direct investment, spillovers and absorptive capacity: evidence from quantile regressions. Bundesbank Series 1 Discussion Paper. 2005.
5.
go back to reference Chunying Z. A quantile regression analysis on the relations between foreign direct investment and technological innovation in China. In: 2011 international conference of information technology, computer engineering and management sciences, Vol. 4, IEEE. 2011. pp. 38–41. Chunying Z. A quantile regression analysis on the relations between foreign direct investment and technological innovation in China. In: 2011 international conference of information technology, computer engineering and management sciences, Vol. 4, IEEE. 2011. pp. 38–41.
6.
go back to reference Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91.PubMedCrossRef Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91.PubMedCrossRef
7.
go back to reference Koenker R, Bassett G Jr. Regression quantiles. Econometrica J Econom Soc. 1978;46(1):33–50.CrossRef Koenker R, Bassett G Jr. Regression quantiles. Econometrica J Econom Soc. 1978;46(1):33–50.CrossRef
8.
go back to reference Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. Berlin: Springer Science & Business Media; 2006. Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. Berlin: Springer Science & Business Media; 2006.
9.
go back to reference Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. Berlin: Springer Science & Business Media; 2009. Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. Berlin: Springer Science & Business Media; 2009.
10.
go back to reference Twisk JW. Applied longitudinal data analysis for epidemiology: a practical guide. Cambridge: Cambridge University Press; 2013.CrossRef Twisk JW. Applied longitudinal data analysis for epidemiology: a practical guide. Cambridge: Cambridge University Press; 2013.CrossRef
11.
go back to reference Diggle P, Diggle PJ, Heagerty P, Liang K-Y, Heagerty PJ, Zeger S. Analysis of longitudinal data. Oxford: Oxford University Press; 2002. Diggle P, Diggle PJ, Heagerty P, Liang K-Y, Heagerty PJ, Zeger S. Analysis of longitudinal data. Oxford: Oxford University Press; 2002.
12.
go back to reference Brown H, Prescott R. Applied mixed models in medicine. Hoboken: Wiley; 2015. Brown H, Prescott R. Applied mixed models in medicine. Hoboken: Wiley; 2015.
13.
go back to reference Koenker R. Quantile regression. Cambridge: Cambridge University Press; 2005.CrossRef Koenker R. Quantile regression. Cambridge: Cambridge University Press; 2005.CrossRef
14.
go back to reference Wichitaksorn N, Choy SB, Gerlach R. A generalized class of skew distributions and associated robust quantile regression models. Can J Stat. 2014;42(4):579–96.CrossRef Wichitaksorn N, Choy SB, Gerlach R. A generalized class of skew distributions and associated robust quantile regression models. Can J Stat. 2014;42(4):579–96.CrossRef
15.
go back to reference Galvao AF Jr. Quantile regression for dynamic panel data with fixed effects. J Econom. 2011;164(1):142–57.CrossRef Galvao AF Jr. Quantile regression for dynamic panel data with fixed effects. J Econom. 2011;164(1):142–57.CrossRef
16.
go back to reference Fu L, Wang Y-G. Quantile regression for longitudinal data with a working correlation model. Comput Stat Data Anal. 2012;56(8):2526–38.CrossRef Fu L, Wang Y-G. Quantile regression for longitudinal data with a working correlation model. Comput Stat Data Anal. 2012;56(8):2526–38.CrossRef
17.
go back to reference Lipsitz SR, Fitzmaurice GM, Molenberghs G, Zhao LP. Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J R Stat Soc: Ser C (Appl Stat). 1997;46(4):463–76.CrossRef Lipsitz SR, Fitzmaurice GM, Molenberghs G, Zhao LP. Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J R Stat Soc: Ser C (Appl Stat). 1997;46(4):463–76.CrossRef
19.
go back to reference Geraci M, Bottai M. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics. 2007;8(1):140–54.PubMedCrossRef Geraci M, Bottai M. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics. 2007;8(1):140–54.PubMedCrossRef
20.
go back to reference Geraci M, Bottai M. Linear quantile mixed models. Stat Comput. 2014;24(3):461–79.CrossRef Geraci M, Bottai M. Linear quantile mixed models. Stat Comput. 2014;24(3):461–79.CrossRef
21.
go back to reference Galarza CE, Lachos VH, Bandyopadhyay D. Quantile regression in linear mixed models: a stochastic approximation EM approach. Stat Interface. 2017;10(3):471–82.PubMedPubMedCentralCrossRef Galarza CE, Lachos VH, Bandyopadhyay D. Quantile regression in linear mixed models: a stochastic approximation EM approach. Stat Interface. 2017;10(3):471–82.PubMedPubMedCentralCrossRef
22.
go back to reference Reich BJ, et al. Flexible Bayesian quantile regression for independent and clustered data. Biostatistics. 2010;11(2):337–52.PubMedCrossRef Reich BJ, et al. Flexible Bayesian quantile regression for independent and clustered data. Biostatistics. 2010;11(2):337–52.PubMedCrossRef
23.
go back to reference Noufaily A, Jones M. Parametric quantile regression based on the generalized gamma distribution. J R Stat Soc: Ser C (Appl Stat). 2013;62(5):723–40. Noufaily A, Jones M. Parametric quantile regression based on the generalized gamma distribution. J R Stat Soc: Ser C (Appl Stat). 2013;62(5):723–40.
24.
go back to reference Liu Y, Bottai M. Mixed-effects models for conditional quantiles with longitudinal data. Int J Biostat. 2009;5(1): 28.CrossRef Liu Y, Bottai M. Mixed-effects models for conditional quantiles with longitudinal data. Int J Biostat. 2009;5(1): 28.CrossRef
25.
go back to reference Muir PR, Wallace CC, Done T, Aguirre JD. Limited scope for latitudinal extension of reef corals. Science. 2015;348(6239):1135–8.PubMedCrossRef Muir PR, Wallace CC, Done T, Aguirre JD. Limited scope for latitudinal extension of reef corals. Science. 2015;348(6239):1135–8.PubMedCrossRef
26.
go back to reference Fornaroli R, Cabrini R, Sartori L, Marazzi F, Vracevic D, Mezzanotte V, Annala M, Canobbio S. Predicting the constraint effect of environmental characteristics on macroinvertebrate density and diversity using quantile regression mixed model. Hydrobiologia. 2015;742(1):153–67.CrossRef Fornaroli R, Cabrini R, Sartori L, Marazzi F, Vracevic D, Mezzanotte V, Annala M, Canobbio S. Predicting the constraint effect of environmental characteristics on macroinvertebrate density and diversity using quantile regression mixed model. Hydrobiologia. 2015;742(1):153–67.CrossRef
27.
go back to reference Blankenberg S, Salomaa V, Makarova N, Ojeda F, Wild P, Lackner KJ, Jørgensen T, Thorand B, Peters A, Nauck M. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE Consortium. Eur Heart J. 2016;37(30):2428–37.PubMedPubMedCentralCrossRef Blankenberg S, Salomaa V, Makarova N, Ojeda F, Wild P, Lackner KJ, Jørgensen T, Thorand B, Peters A, Nauck M. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE Consortium. Eur Heart J. 2016;37(30):2428–37.PubMedPubMedCentralCrossRef
28.
go back to reference Patel DE, Geraci M, Cortina-Borja M. Modeling normative kinetic perimetry isopters using mixed-effects quantile regression. J Vis. 2016;16(6):7–7.PubMedCrossRef Patel DE, Geraci M, Cortina-Borja M. Modeling normative kinetic perimetry isopters using mixed-effects quantile regression. J Vis. 2016;16(6):7–7.PubMedCrossRef
29.
go back to reference Van Loggerenberg F, Mlisana K, Williamson C, Auld SC, Morris L, Gray CM, Karim QA, Grobler A, Barnabas N, Iriogbe I. Establishing a cohort at high risk of HIV infection in South Africa: challenges and experiences of the CAPRISA 002 Acute Infection Study. PLoS ONE. 2008;3(4):e1954.PubMedPubMedCentralCrossRef Van Loggerenberg F, Mlisana K, Williamson C, Auld SC, Morris L, Gray CM, Karim QA, Grobler A, Barnabas N, Iriogbe I. Establishing a cohort at high risk of HIV infection in South Africa: challenges and experiences of the CAPRISA 002 Acute Infection Study. PLoS ONE. 2008;3(4):e1954.PubMedPubMedCentralCrossRef
30.
go back to reference Mlisana K, Werner L, Garrett NJ, McKinnon LR, van Loggerenberg F, Passmore J-AS, Gray CM, Morris L, Williamson C, Abdool Karim SS. Rapid disease progression in HIV-1 subtype C-infected South African Women. Clin Infect Dis. 2014;59(9):1322–31.PubMedPubMedCentralCrossRef Mlisana K, Werner L, Garrett NJ, McKinnon LR, van Loggerenberg F, Passmore J-AS, Gray CM, Morris L, Williamson C, Abdool Karim SS. Rapid disease progression in HIV-1 subtype C-infected South African Women. Clin Infect Dis. 2014;59(9):1322–31.PubMedPubMedCentralCrossRef
31.
go back to reference Yirga AA, Melesse SF, Mwambi HG, Ayele DG. Modelling CD4 counts before and after HAART for HIV infected patients in KwaZulu-Natal South Africa. Afr Health Sci. 2020;20(4):1546–61.PubMedPubMedCentralCrossRef Yirga AA, Melesse SF, Mwambi HG, Ayele DG. Modelling CD4 counts before and after HAART for HIV infected patients in KwaZulu-Natal South Africa. Afr Health Sci. 2020;20(4):1546–61.PubMedPubMedCentralCrossRef
32.
go back to reference Yirga AA, Melesse SF, Mwambi HG, Ayele DG. Negative binomial mixed models for analyzing longitudinal CD4 count data. Sci Rep. 2020;10(1):1–15.CrossRef Yirga AA, Melesse SF, Mwambi HG, Ayele DG. Negative binomial mixed models for analyzing longitudinal CD4 count data. Sci Rep. 2020;10(1):1–15.CrossRef
33.
go back to reference Yirga AA, Melesse SF, Mwambi HG, Ayele DG. Additive quantile mixed effects modelling with application to longitudinal CD4 count data. Sci Rep. 2021;11(1):1–12.CrossRef Yirga AA, Melesse SF, Mwambi HG, Ayele DG. Additive quantile mixed effects modelling with application to longitudinal CD4 count data. Sci Rep. 2021;11(1):1–12.CrossRef
34.
go back to reference Whelan D. Gender and HIV/AIDS: taking stock of research and programmes. Geneva: UNAIDS; 1999. Whelan D. Gender and HIV/AIDS: taking stock of research and programmes. Geneva: UNAIDS; 1999.
37.
39.
go back to reference Rosenberg ES, Altfeld M, Poon SH, Phillips MN, Wilkes BM, Eldridge RL, Robbins GK, Richard T, Goulder PJ, Walker BD. Immune control of HIV-1 after early treatment of acute infection. Nature. 2000;407(6803):523–6.PubMedCrossRef Rosenberg ES, Altfeld M, Poon SH, Phillips MN, Wilkes BM, Eldridge RL, Robbins GK, Richard T, Goulder PJ, Walker BD. Immune control of HIV-1 after early treatment of acute infection. Nature. 2000;407(6803):523–6.PubMedCrossRef
40.
go back to reference Yirga AA, Ayele DG, Melesse SF. Application of quantile regression: modeling body mass Index in Ethiopia. Open Public Health J. 2018;11(1):221–33.CrossRef Yirga AA, Ayele DG, Melesse SF. Application of quantile regression: modeling body mass Index in Ethiopia. Open Public Health J. 2018;11(1):221–33.CrossRef
41.
go back to reference Buchinsky M. Recent advances in quantile regression models: a practical guideline for empirical research. J Hum Resour. 1998;33(1):88–126.CrossRef Buchinsky M. Recent advances in quantile regression models: a practical guideline for empirical research. J Hum Resour. 1998;33(1):88–126.CrossRef
42.
go back to reference Ellerbe CN, Gebregziabher M, Korte JE, Mauldin J, Hunt KJ. Quantifying the impact of gestational diabetes mellitus, maternal weight and race on birthweight via quantile regression. PLoS ONE. 2013;8(6):e65017.PubMedPubMedCentralCrossRef Ellerbe CN, Gebregziabher M, Korte JE, Mauldin J, Hunt KJ. Quantifying the impact of gestational diabetes mellitus, maternal weight and race on birthweight via quantile regression. PLoS ONE. 2013;8(6):e65017.PubMedPubMedCentralCrossRef
43.
go back to reference Koenker R, Hallock KF. Quantile regression. J Econ Perspect. 2001;15(4):143–56.CrossRef Koenker R, Hallock KF. Quantile regression. J Econ Perspect. 2001;15(4):143–56.CrossRef
45.
46.
go back to reference Sherwood B, Wang L, Zhou XH. Weighted quantile regression for analyzing health care cost data with missing covariates. Stat Med. 2013;32(28):4967–79.PubMedCrossRef Sherwood B, Wang L, Zhou XH. Weighted quantile regression for analyzing health care cost data with missing covariates. Stat Med. 2013;32(28):4967–79.PubMedCrossRef
47.
48.
go back to reference Borgoni R. A quantile regression approach to evaluate factors influencing residential indoor radon concentration. Environ Model Assess. 2011;16(3):239–50.CrossRef Borgoni R. A quantile regression approach to evaluate factors influencing residential indoor radon concentration. Environ Model Assess. 2011;16(3):239–50.CrossRef
49.
go back to reference Yu K, Lu Z, Stander J. Quantile regression: Applications and current research areas. J R Stat Soc: Ser D (The Statistician). 2003;52(3):331–50. Yu K, Lu Z, Stander J. Quantile regression: Applications and current research areas. J R Stat Soc: Ser D (The Statistician). 2003;52(3):331–50.
50.
go back to reference Knight CA, Ackerly DD. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett. 2002;5(1):66–76.CrossRef Knight CA, Ackerly DD. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett. 2002;5(1):66–76.CrossRef
51.
go back to reference Cade BS, Noon BR. A gentle introduction to quantile regression for ecologists. Front Ecol Environ. 2003;1(8):412–20.CrossRef Cade BS, Noon BR. A gentle introduction to quantile regression for ecologists. Front Ecol Environ. 2003;1(8):412–20.CrossRef
52.
go back to reference Lachos VH, Chen M-H, Abanto-Valle CA, Azevedo CL. Quantile regression for censored mixed-effects models with applications to HIV studies. Stat Interface. 2015;8(2):203.PubMedPubMedCentralCrossRef Lachos VH, Chen M-H, Abanto-Valle CA, Azevedo CL. Quantile regression for censored mixed-effects models with applications to HIV studies. Stat Interface. 2015;8(2):203.PubMedPubMedCentralCrossRef
53.
go back to reference Koenker R, Machado JA. Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc. 1999;94(448):1296–310.CrossRef Koenker R, Machado JA. Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc. 1999;94(448):1296–310.CrossRef
54.
go back to reference Cameron AC, Trivedi PK. Microeconometrics: methods and applications. Cambridge: Cambridge University Press; 2005.CrossRef Cameron AC, Trivedi PK. Microeconometrics: methods and applications. Cambridge: Cambridge University Press; 2005.CrossRef
55.
go back to reference Cameron AC, Trivedi PK. Microeconometrics using stata, vol. 2. College Station: Stata Press; 2009. Cameron AC, Trivedi PK. Microeconometrics using stata, vol. 2. College Station: Stata Press; 2009.
56.
go back to reference Cameron AC, Trivedi PK. Regression analysis of count data, vol. 53. Cambridge: Cambridge University Press; 2013.CrossRef Cameron AC, Trivedi PK. Regression analysis of count data, vol. 53. Cambridge: Cambridge University Press; 2013.CrossRef
57.
go back to reference Yu K, Moyeed RA. Bayesian quantile regression. Stat Probab Lett. 2001;54(4):437–47.CrossRef Yu K, Moyeed RA. Bayesian quantile regression. Stat Probab Lett. 2001;54(4):437–47.CrossRef
58.
go back to reference Yu K, Zhang J. A three-parameter asymmetric Laplace distribution and its extension. Commun Stat Theory Methods. 2005;34(9–10):1867–79.CrossRef Yu K, Zhang J. A three-parameter asymmetric Laplace distribution and its extension. Commun Stat Theory Methods. 2005;34(9–10):1867–79.CrossRef
59.
go back to reference Kotz S, Kozubowski T, Podgorski K. The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Berlin: Springer Science & Business Media; 2012. Kotz S, Kozubowski T, Podgorski K. The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Berlin: Springer Science & Business Media; 2012.
60.
go back to reference Kozubowski TJ, Nadarajah S. Multitude of Laplace distributions. Stat Pap. 2010;51(1):127.CrossRef Kozubowski TJ, Nadarajah S. Multitude of Laplace distributions. Stat Pap. 2010;51(1):127.CrossRef
61.
go back to reference Winkelmann R. Econometric analysis of count data. Berlin: Springer Science & Business Media; 2008. Winkelmann R. Econometric analysis of count data. Berlin: Springer Science & Business Media; 2008.
62.
go back to reference Hilbe JM. Negative binomial regression. Cambridge: Cambridge University Press; 2011.CrossRef Hilbe JM. Negative binomial regression. Cambridge: Cambridge University Press; 2011.CrossRef
63.
go back to reference Hilbe JM. Modeling count data. Cambridge: Cambridge University Press; 2014.CrossRef Hilbe JM. Modeling count data. Cambridge: Cambridge University Press; 2014.CrossRef
64.
go back to reference Machado JAF, Silva JS. Quantiles for counts. J Am Stat Assoc. 2005;100(472):1226–37.CrossRef Machado JAF, Silva JS. Quantiles for counts. J Am Stat Assoc. 2005;100(472):1226–37.CrossRef
65.
go back to reference Winkelmann R. Reforming health care: evidence from quantile regressions for counts. J Health Econ. 2006;25(1):131–45.PubMedCrossRef Winkelmann R. Reforming health care: evidence from quantile regressions for counts. J Health Econ. 2006;25(1):131–45.PubMedCrossRef
66.
go back to reference Miranda A. Planned fertility and family background: a quantile regression for counts analysis. J Popul Econ. 2008;21(1):67–81.CrossRef Miranda A. Planned fertility and family background: a quantile regression for counts analysis. J Popul Econ. 2008;21(1):67–81.CrossRef
67.
go back to reference Dempster AP, et al. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc: Ser B (Methodol). 1977;39(1):1–22. Dempster AP, et al. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc: Ser B (Methodol). 1977;39(1):1–22.
68.
go back to reference McLachlan GJ, Krishnan T. The EM algorithm and extensions, vol. 382. Hoboken: Wiley; 2007. McLachlan GJ, Krishnan T. The EM algorithm and extensions, vol. 382. Hoboken: Wiley; 2007.
69.
go back to reference Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann Stat. 1999;21(1):94–128. Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann Stat. 1999;21(1):94–128.
70.
go back to reference Jank W. Implementing and diagnosing the stochastic approximation EM algorithm. J Comput Graph Stat. 2006;15(4):803–29.CrossRef Jank W. Implementing and diagnosing the stochastic approximation EM algorithm. J Comput Graph Stat. 2006;15(4):803–29.CrossRef
71.
go back to reference Meza C, Osorio F, De la Cruz R. Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Stat Comput. 2012;22(1):121–39.CrossRef Meza C, Osorio F, De la Cruz R. Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Stat Comput. 2012;22(1):121–39.CrossRef
72.
go back to reference Kuhn E, Lavielle M. Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM Probab Stat. 2004;8:115–31.CrossRef Kuhn E, Lavielle M. Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM Probab Stat. 2004;8:115–31.CrossRef
73.
go back to reference Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal. 2005;49(4):1020–38.CrossRef Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal. 2005;49(4):1020–38.CrossRef
Metadata
Title
Application of quantile mixed-effects model in modeling CD4 count from HIV-infected patients in KwaZulu-Natal South Africa
Authors
Ashenafi A. Yirga
Sileshi F. Melesse
Henry G. Mwambi
Dawit G. Ayele
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06942-7

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue