Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Research

The effectiveness of syndromic surveillance for the early detection of waterborne outbreaks: a systematic review

Authors: Susanne Hyllestad, Ettore Amato, Karin Nygård, Line Vold, Preben Aavitsland

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Waterborne outbreaks are still a risk in high-income countries, and their early detection is crucial to limit their societal consequences. Although syndromic surveillance is widely used for the purpose of detecting outbreaks days earlier than traditional surveillance systems, evidence of the effectiveness of such systems is lacking. Thus, our objective was to conduct a systematic review of the effectiveness of syndromic surveillance to detect waterborne outbreaks.

Method

We searched the Cochrane Library, Medline/PubMed, EMBASE, Scopus, and Web of Science for relevant published articles using a combination of the keywords ‘drinking water’, ‘surveillance’, and ‘waterborne disease’ for the period of 1990 to 2018. The references lists of the identified articles for full-text record assessment were screened, and searches in Google Scholar using the same key words were conducted. We assessed the risk of bias in the included articles using the ROBINS-I tool and PRECEPT for the cumulative body of evidence.

Results

From the 1959 articles identified, we reviewed 52 articles, of which 18 met the eligibility criteria. Twelve were descriptive/analytical studies, whereas six were simulation studies. There is no clear evidence for syndromic surveillance in terms of the ability to detect waterborne outbreaks (low sensitivity and high specificity). However, one simulation study implied that multiple sources of signals combined with spatial information may increase the timeliness in detecting a waterborne outbreak and reduce false alarms.

Conclusion

This review demonstrates that there is no conclusive evidence on the effectiveness of syndromic surveillance for the detection of waterborne outbreaks, thus suggesting the need to focus on primary prevention measures to reduce the risk of waterborne outbreaks. Future studies should investigate methods for combining health and environmental data with an assessment of needed financial and human resources for implementing such surveillance systems. In addition, a more critical thematic narrative synthesis on the most promising sources of data, and an assessment of the basis for arguments that joint analysis of different data or dimensions of data (e.g. spatial and temporal) might perform better, should be carried out.

Trial registration

PROSPERO: International prospective register of systematic reviews. 2019. CRD42019122332.
Appendix
Available only for authorised users
Literature
2.
go back to reference Triple S Project. Assessment of syndromic surveillance in Europe. Lancet. 2011;378:1833–4. Triple S Project. Assessment of syndromic surveillance in Europe. Lancet. 2011;378:1833–4.
6.
go back to reference Andersson T, Bjelkmar P, Hulth A, Lindh J, Stenmark S, Widerstrom M. Syndromic surveillance for local outbreak detection and awareness: evaluating outbreak signals of acute gastroenteritis in telephone triage, web-based queries and over-the-counter pharmacy sales. Epidemiol Infect. 2014;142(2):303–13. https://doi.org/10.1017/S0950268813001088.CrossRefPubMed Andersson T, Bjelkmar P, Hulth A, Lindh J, Stenmark S, Widerstrom M. Syndromic surveillance for local outbreak detection and awareness: evaluating outbreak signals of acute gastroenteritis in telephone triage, web-based queries and over-the-counter pharmacy sales. Epidemiol Infect. 2014;142(2):303–13. https://​doi.​org/​10.​1017/​S095026881300108​8.CrossRefPubMed
10.
go back to reference Buehler J, Hopkins R, Overhage J, Sosin D, Van Tong D. Framework for Evaluating Public Health Surveillance Systems for Early Detection of Outbreaks: Recommendations from the CDC Working Group. MMWR. 2004;53(RR-5):1–13.PubMed Buehler J, Hopkins R, Overhage J, Sosin D, Van Tong D. Framework for Evaluating Public Health Surveillance Systems for Early Detection of Outbreaks: Recommendations from the CDC Working Group. MMWR. 2004;53(RR-5):1–13.PubMed
13.
go back to reference Gough DA, Oliver S, Thomas J. An introduction to systematic reviews. Second edition. Ed. Los Angeles: SAGE; 2017. Gough DA, Oliver S, Thomas J. An introduction to systematic reviews. Second edition. Ed. Los Angeles: SAGE; 2017.
14.
go back to reference Ouzzani M, Hammady H, Fedorowicz Z, AJSR E. Rayyan—a web and mobile app for systematic reviews. BMC Syst Rev. 2016;5(1):210. Ouzzani M, Hammady H, Fedorowicz Z, AJSR E. Rayyan—a web and mobile app for systematic reviews. BMC Syst Rev. 2016;5(1):210.
15.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. The BMJ. 2009;339:b2535.CrossRefPubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. The BMJ. 2009;339:b2535.CrossRefPubMedPubMedCentral
16.
go back to reference Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. 2016;355:i4919. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. 2016;355:i4919.
17.
go back to reference Harder T, Takla A, Eckmanns T, Ellis S, Forland F, James R, et al. PRECEPT: an evidence assessment framework for infectious disease epidemiology, prevention and control. Eurosurveillance. 2017;22(40):16–00620.CrossRefPubMedCentral Harder T, Takla A, Eckmanns T, Ellis S, Forland F, James R, et al. PRECEPT: an evidence assessment framework for infectious disease epidemiology, prevention and control. Eurosurveillance. 2017;22(40):16–00620.CrossRefPubMedCentral
19.
go back to reference Andersson T, Bjelkmar P, Hulth A, Lindh J, Stenmark S, Widerstrom M. Syndromic surveillance for local outbreak detection and awareness: evaluating outbreak signals of acute gastroenteritis in telephone triage, web-based queries and over-the-counter pharmacy sales. Epidemiol Infect. 2014;142(2):303–13. https://doi.org/10.1017/S0950268813001088.CrossRefPubMed Andersson T, Bjelkmar P, Hulth A, Lindh J, Stenmark S, Widerstrom M. Syndromic surveillance for local outbreak detection and awareness: evaluating outbreak signals of acute gastroenteritis in telephone triage, web-based queries and over-the-counter pharmacy sales. Epidemiol Infect. 2014;142(2):303–13. https://​doi.​org/​10.​1017/​S095026881300108​8.CrossRefPubMed
22.
go back to reference Smith S, Elliot AJ, Mallaghan C, Modha D, Hippisley-Cox J, Large S, et al. Value of syndromic surveillance in monitoring a focal waterborne outbreak due to an unusual Cryptosporidium genotype in Northamptonshire, United Kingdom, June-July 2008. Eurosurveillance. 2010;15(33):9.CrossRef Smith S, Elliot AJ, Mallaghan C, Modha D, Hippisley-Cox J, Large S, et al. Value of syndromic surveillance in monitoring a focal waterborne outbreak due to an unusual Cryptosporidium genotype in Northamptonshire, United Kingdom, June-July 2008. Eurosurveillance. 2010;15(33):9.CrossRef
27.
go back to reference Balter S, Weiss D, Hanson H, Reddy V, Das D, Heffernan R. Three years of emergency department gastrointestinal syndromic surveillance in new York City: what have we found? MMWR Suppl. 2005;54:175–80.PubMed Balter S, Weiss D, Hanson H, Reddy V, Das D, Heffernan R. Three years of emergency department gastrointestinal syndromic surveillance in new York City: what have we found? MMWR Suppl. 2005;54:175–80.PubMed
30.
go back to reference Edge VL, Pollari F, Lim G, Ararnini J, Sockett P, Martin SW, et al. Syndromic surveillance of gastrointestinal illness using pharmacy over-the-counter sales - a retrospective stud of waterborne outbreaks in Saskatchewan and Ontario. Can J Public Health Rev. 2004;95(6):446–50. https://doi.org/10.1007/BF03403991.CrossRef Edge VL, Pollari F, Lim G, Ararnini J, Sockett P, Martin SW, et al. Syndromic surveillance of gastrointestinal illness using pharmacy over-the-counter sales - a retrospective stud of waterborne outbreaks in Saskatchewan and Ontario. Can J Public Health Rev. 2004;95(6):446–50. https://​doi.​org/​10.​1007/​BF03403991.CrossRef
42.
go back to reference Tinker SC, Moe CL, Klein M, Flanders WD, Uber J, Amirtharajah A, et al. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004. Journal of Exposure Science & Environmental Epidemiology. 2010;20(1):19–28. https://doi.org/10.1038/jes.2008.68.CrossRef Tinker SC, Moe CL, Klein M, Flanders WD, Uber J, Amirtharajah A, et al. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004. Journal of Exposure Science & Environmental Epidemiology. 2010;20(1):19–28. https://​doi.​org/​10.​1038/​jes.​2008.​68.CrossRef
43.
go back to reference Hsieh JL, Nguyen TQ, Matte T, Ito K. Drinking water turbidity and emergency department visits for gastrointestinal illness in New York City, 2002–2009. PLoS ONE [Electronic Resource]. 2015;10(4):e0125071.CrossRef Hsieh JL, Nguyen TQ, Matte T, Ito K. Drinking water turbidity and emergency department visits for gastrointestinal illness in New York City, 2002–2009. PLoS ONE [Electronic Resource]. 2015;10(4):e0125071.CrossRef
46.
go back to reference Derby M, McNally J, Ranger-Moore J, Hulette L, Villar R, Hysong T, et al. Poison Control Center-Based Syndromic Surveillance for Foodborne Illness. MMWR. 2005;2005(54). Derby M, McNally J, Ranger-Moore J, Hulette L, Villar R, Hysong T, et al. Poison Control Center-Based Syndromic Surveillance for Foodborne Illness. MMWR. 2005;2005(54).
50.
go back to reference Noufaily A, Enki DG, Farrington P, Garthwaite P, Andrews N, Charlett A. An improved algorithm for outbreak detection in multiple surveillance systems. 2013;32(7):1206–22. Noufaily A, Enki DG, Farrington P, Garthwaite P, Andrews N, Charlett A. An improved algorithm for outbreak detection in multiple surveillance systems. 2013;32(7):1206–22.
52.
go back to reference Smith S, Elliot AJ, Mallaghan C, Modha D, Hippisley-Cox J, Large S, et al. Value of syndromic surveillance in monitoring a focal waterborne outbreak due to an unusual Cryptosporidium genotype in Northamptonshire, United Kingdom, June–July 2008. Euro Surveillance. 2010;15(33):19643.PubMed Smith S, Elliot AJ, Mallaghan C, Modha D, Hippisley-Cox J, Large S, et al. Value of syndromic surveillance in monitoring a focal waterborne outbreak due to an unusual Cryptosporidium genotype in Northamptonshire, United Kingdom, June–July 2008. Euro Surveillance. 2010;15(33):19643.PubMed
54.
go back to reference Rizak S, Hrudey S. Evidence of water quality monitoring limitations for outbreak detection. Environ Health. 2007;7(1):11–21. Rizak S, Hrudey S. Evidence of water quality monitoring limitations for outbreak detection. Environ Health. 2007;7(1):11–21.
55.
go back to reference Rizak S, Hrudey S. Achieving safe drinking water — risk management based on experience and reality. Environ Rev. 2007;15(NA):169–74.CrossRef Rizak S, Hrudey S. Achieving safe drinking water — risk management based on experience and reality. Environ Rev. 2007;15(NA):169–74.CrossRef
56.
go back to reference Hyllestad S, Iversen A, MacDonald E, Amato E, Borge B, Bøe A, et al. Large waterborne campylobacter outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance. 2020;25(35):2000011.CrossRefPubMedCentral Hyllestad S, Iversen A, MacDonald E, Amato E, Borge B, Bøe A, et al. Large waterborne campylobacter outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance. 2020;25(35):2000011.CrossRefPubMedCentral
Metadata
Title
The effectiveness of syndromic surveillance for the early detection of waterborne outbreaks: a systematic review
Authors
Susanne Hyllestad
Ettore Amato
Karin Nygård
Line Vold
Preben Aavitsland
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06387-y

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.