Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Technical advance

ICARES: a real-time automated detection tool for clusters of infectious diseases in the Netherlands

Authors: Geert H. Groeneveld, Anton Dalhuijsen, Chakib Kara-Zaïtri, Bob Hamilton, Margot W. de Waal, Jaap T. van Dissel, Jim E. van Steenbergen

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Clusters of infectious diseases are frequently detected late. Real-time, detailed information about an evolving cluster and possible associated conditions is essential for local policy makers, travelers planning to visit the area, and the local population. This is currently illustrated in the Zika virus outbreak.

Methods

In the Netherlands, ICARES (Integrated Crisis Alert and Response System) has been developed and tested on three syndromes as an automated, real-time tool for early detection of clusters of infectious diseases. From local general practices, General Practice Out-of-Hours services and a hospital, the numbers of routinely used syndrome codes for three piloted tracts i.e., respiratory tract infection, hepatitis and encephalitis/meningitis, are sent on a daily basis to a central unit of infectious disease control. Historic data combined with information about patients’ syndromes, age cohort, gender and postal code area have been used to detect clusters of cases.

Results

During the first 2 years, two out of eight alerts appeared to be a real cluster. The first was part of the seasonal increase in Enterovirus encephalitis and the second was a remarkably long lasting influenza season with high peak incidence.

Conclusions

This tool is believed to be the first flexible automated, real-time cluster detection system for infectious diseases, based on physician information from both general practitioners and hospitals. ICARES is able to detect and follow small regional clusters in real time and can handle any diseases entity that is regularly registered by first line physicians. Its value will be improved when more health care institutions agree to link up with ICARES thus improving further the signal-to-noise ratio.
Literature
1.
go back to reference Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, et al. Global rise in human infectious disease outbreaks. J R Soc Interface. 2014;11(101):20140950.CrossRefPubMedPubMedCentral Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, et al. Global rise in human infectious disease outbreaks. J R Soc Interface. 2014;11(101):20140950.CrossRefPubMedPubMedCentral
2.
go back to reference Den Boer J, Yzerman E, Schellekens J, Lettinga K, Boshuizen H, Van Steenbergen J. A large outbreak of Legionnaires’ disease at a flower show, the Netherlands, 1999. Emerg Infect Dis. 2001;8(1):37–43.CrossRef Den Boer J, Yzerman E, Schellekens J, Lettinga K, Boshuizen H, Van Steenbergen J. A large outbreak of Legionnaires’ disease at a flower show, the Netherlands, 1999. Emerg Infect Dis. 2001;8(1):37–43.CrossRef
3.
go back to reference Lettinga KD, Verbon A, Weverling GJ, Schellekens JF, Den Boer JW, Yzerman EP, et al. Legionnaires’ disease at a Dutch flower show: prognostic factors and impact of therapy. Emerg Infect Dis. 2002;8(12):1448–54.CrossRefPubMedPubMedCentral Lettinga KD, Verbon A, Weverling GJ, Schellekens JF, Den Boer JW, Yzerman EP, et al. Legionnaires’ disease at a Dutch flower show: prognostic factors and impact of therapy. Emerg Infect Dis. 2002;8(12):1448–54.CrossRefPubMedPubMedCentral
4.
go back to reference Frank C, Werber D, Cramer JP, Askar M, Faber M, An Der HM, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011;365(19):1771–80.CrossRefPubMed Frank C, Werber D, Cramer JP, Askar M, Faber M, An Der HM, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011;365(19):1771–80.CrossRefPubMed
5.
go back to reference Altmann M, Spode A, Altmann D, Wadl M, Benzler J, Eckmanns T, et al. Timeliness of surveillance during outbreak of Shiga Toxin-producing Escherichia coli infection, Germany, 2011. Emerg Infect Dis. 2011;17(10):1906–9.CrossRefPubMedPubMedCentral Altmann M, Spode A, Altmann D, Wadl M, Benzler J, Eckmanns T, et al. Timeliness of surveillance during outbreak of Shiga Toxin-producing Escherichia coli infection, Germany, 2011. Emerg Infect Dis. 2011;17(10):1906–9.CrossRefPubMedPubMedCentral
6.
go back to reference Pan American Health Organization. Epidemiological alert. Increase in microcephaly in the northeast of Brazil-epidemiological alert. 17-11-2015. Washington: World Health Organization, Pan American Health Organization; 2016. Pan American Health Organization. Epidemiological alert. Increase in microcephaly in the northeast of Brazil-epidemiological alert. 17-11-2015. Washington: World Health Organization, Pan American Health Organization; 2016.
7.
go back to reference Victora CG, Schuler-Faccini L, Matijasevich A, Ribeiro E, Pessoa A, Barros FC. Microcephaly in Brazil: how to interpret reported numbers? Lancet. 2016;387(10019):621–4.CrossRefPubMed Victora CG, Schuler-Faccini L, Matijasevich A, Ribeiro E, Pessoa A, Barros FC. Microcephaly in Brazil: how to interpret reported numbers? Lancet. 2016;387(10019):621–4.CrossRefPubMed
9.
go back to reference Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis. 2009;49(10):1557–64.CrossRefPubMed Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis. 2009;49(10):1557–64.CrossRefPubMed
10.
go back to reference Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014;343(6176):1203–5.CrossRefPubMed Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014;343(6176):1203–5.CrossRefPubMed
12.
go back to reference Buehler JW, Whitney EA, Smith D, Prietula MJ, Stanton SH, Isakov AP. Situational uses of syndromic surveillance. Biosecur Bioterror. 2009;7(2):165–77.CrossRefPubMed Buehler JW, Whitney EA, Smith D, Prietula MJ, Stanton SH, Isakov AP. Situational uses of syndromic surveillance. Biosecur Bioterror. 2009;7(2):165–77.CrossRefPubMed
13.
go back to reference Al-Tawfiq JA, Zumla A, Gautret P, Gray GC, Hui DS, Al-Rabeeah AA, et al. Surveillance for emerging respiratory viruses. Lancet Infect Dis. 2014;14(10):992–1000.CrossRefPubMed Al-Tawfiq JA, Zumla A, Gautret P, Gray GC, Hui DS, Al-Rabeeah AA, et al. Surveillance for emerging respiratory viruses. Lancet Infect Dis. 2014;14(10):992–1000.CrossRefPubMed
14.
go back to reference Lamberts H, Wood M. ICPC International classification of primary care. Oxford: Oxford University Press 1987; 1987. Lamberts H, Wood M. ICPC International classification of primary care. Oxford: Oxford University Press 1987; 1987.
15.
go back to reference Njoo KH, Stroucken J, Veld in’t K. NHG Richtlijn Adequate dossiervorming met het EMD: Van eiland naar vasteland. Huisarts Wet. 2004;47:42–3.CrossRef Njoo KH, Stroucken J, Veld in’t K. NHG Richtlijn Adequate dossiervorming met het EMD: Van eiland naar vasteland. Huisarts Wet. 2004;47:42–3.CrossRef
16.
go back to reference Unkel S, Farrington C, Garthwaite P, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: a review. J R Statist Soc A. 2012;175(1):49–82.CrossRef Unkel S, Farrington C, Garthwaite P, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: a review. J R Statist Soc A. 2012;175(1):49–82.CrossRef
22.
go back to reference Triple S project. Assessment of syndromic surveillance in Europe. Lancet. 2011;378(9806):1833–4.CrossRef Triple S project. Assessment of syndromic surveillance in Europe. Lancet. 2011;378(9806):1833–4.CrossRef
23.
go back to reference Centers for Disease Control and Prevention (CDC). Assessment of ESSENCE performance for influenza-like illness surveillance after an influenza outbreak--U.S. Air Force Academy, Colorado, 2009. MMWR Morb Mortal Wkly Rep. 2011;60(13):406–9. Centers for Disease Control and Prevention (CDC). Assessment of ESSENCE performance for influenza-like illness surveillance after an influenza outbreak--U.S. Air Force Academy, Colorado, 2009. MMWR Morb Mortal Wkly Rep. 2011;60(13):406–9.
24.
go back to reference Heaton MJ, Banks DL, Zou J, Karr AF, Datta G, Lynch J, et al. A spatio-temporal absorbing state model for disease and syndromic surveillance. Stat Med. 2012;31(19):2123–36.CrossRefPubMed Heaton MJ, Banks DL, Zou J, Karr AF, Datta G, Lynch J, et al. A spatio-temporal absorbing state model for disease and syndromic surveillance. Stat Med. 2012;31(19):2123–36.CrossRefPubMed
25.
go back to reference Buckeridge DL, Burkom H, Campbell M, Hogan WR, Moore AW. Algorithms for rapid outbreak detection: a research synthesis. J Biomed Inform. 2005;38(2):99–113.CrossRefPubMed Buckeridge DL, Burkom H, Campbell M, Hogan WR, Moore AW. Algorithms for rapid outbreak detection: a research synthesis. J Biomed Inform. 2005;38(2):99–113.CrossRefPubMed
26.
go back to reference Griffin BA, Jain AK, Davies-Cole J, Glymph C, Lum G, Washington SC, et al. Early detection of influenza outbreaks using the DC Department of Health’s syndromic surveillance system. BMC Public Health. 2009;9:483.CrossRefPubMedPubMedCentral Griffin BA, Jain AK, Davies-Cole J, Glymph C, Lum G, Washington SC, et al. Early detection of influenza outbreaks using the DC Department of Health’s syndromic surveillance system. BMC Public Health. 2009;9:483.CrossRefPubMedPubMedCentral
27.
go back to reference Mukhi, SN. A Confidence-based Aberration Interpretation Framework For Outbreak Conciliation. J Publ Health Inform. 2010;2(1):e3. Mukhi, SN. A Confidence-based Aberration Interpretation Framework For Outbreak Conciliation. J Publ Health Inform. 2010;2(1):e3.
28.
go back to reference Singh BK, Savill NJ, Ferguson NM, Robertson C, Woolhouse ME. Rapid detection of pandemic influenza in the presence of seasonal influenza. BMC Public Health. 2010;10:726.CrossRefPubMedPubMedCentral Singh BK, Savill NJ, Ferguson NM, Robertson C, Woolhouse ME. Rapid detection of pandemic influenza in the presence of seasonal influenza. BMC Public Health. 2010;10:726.CrossRefPubMedPubMedCentral
29.
go back to reference Fricker Jr RD, Hegler BL, Dunfee DA. Comparing syndromic surveillance detection methods: EARS’ versus a CUSUM-based methodology. Stat Med. 2008;27(17):3407–29.CrossRefPubMed Fricker Jr RD, Hegler BL, Dunfee DA. Comparing syndromic surveillance detection methods: EARS’ versus a CUSUM-based methodology. Stat Med. 2008;27(17):3407–29.CrossRefPubMed
Metadata
Title
ICARES: a real-time automated detection tool for clusters of infectious diseases in the Netherlands
Authors
Geert H. Groeneveld
Anton Dalhuijsen
Chakib Kara-Zaïtri
Bob Hamilton
Margot W. de Waal
Jaap T. van Dissel
Jim E. van Steenbergen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2300-5

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue