Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Antibiotic | Research article

A multicenter analysis of the clinical microbiology and antimicrobial usage in hospitalized patients in the US with or without COVID-19

Authors: Laura Puzniak, Lyn Finelli, Kalvin C. Yu, Karri A. Bauer, Pamela Moise, Carisa De Anda, Latha Vankeepuram, Aryana Sepassi, Vikas Gupta

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Past respiratory viral epidemics suggest that bacterial infections impact clinical outcomes. There is minimal information on potential co-pathogens in patients with coronavirus disease-2019 (COVID-19) in the US. We analyzed pathogens, antimicrobial use, and healthcare utilization in hospitalized US patients with and without severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Methods

This multicenter retrospective study included patients with > 1 day of inpatient admission and discharge/death between March 1 and May 31, 2020 at 241 US acute care hospitals in the BD Insights Research Database. We assessed microbiological testing data, antimicrobial utilization in admitted patients with ≥24 h of antimicrobial therapy, and length of stay (LOS).

Results

A total of 141,621 patients were tested for SARS-CoV-2 (17,003 [12.0%] positive) and 449,339 patients were not tested. Most (> 90%) patients tested for SARS-CoV-2 had additional microbiologic testing performed compared with 41.9% of SARS-CoV-2-untested patients. Non-SARS-CoV-2 pathogen rates were 20.9% for SARS-CoV-2-positive patients compared with 21.3 and 27.9% for SARS-CoV-2-negative and −untested patients, respectively. Gram-negative bacteria were the most common pathogens (45.5, 44.1, and 43.5% for SARS-CoV-2-positive, −negative, and −untested patients). SARS-CoV-2-positive patients had higher rates of hospital-onset (versus admission-onset) non-SARS-CoV-2 pathogens compared with SARS-CoV-2-negative or −untested patients (42.4, 22.2, and 19.5%, respectively), more antimicrobial usage (68.0, 45.2, and 25.1% of patients), and longer hospital LOS (mean [standard deviation (SD)] of 8.6 [11.4], 5.1 [8.9], and 4.2 [8.0] days) and intensive care unit (ICU) LOS (mean [SD] of 7.8 [8.5], 3.6 [6.2], and 3.6 [5.9] days). For all groups, the presence of a non-SARS-CoV-2 pathogen was associated with increased hospital LOS (mean [SD] days for patients with versus without a non-SARS-CoV-2 pathogen: 13.7 [15.7] vs 7.3 [9.6] days for SARS-CoV-2-positive patients, 8.2 [11.5] vs 4.3 [7.9] days for SARS-CoV-2-negative patients, and 7.1 [11.0] vs 3.9 [7.4] days for SARS-CoV-2-untested patients).

Conclusions

Despite similar rates of non-SARS-CoV-2 pathogens in SARS-CoV-2-positive, −negative, and −untested patients, SARS-CoV-2 was associated with higher rates of hospital-onset infections, greater antimicrobial usage, and extended hospital and ICU LOS. This finding highlights the heavy burden of the COVID-19 pandemic on healthcare systems and suggests possible opportunities for diagnostic and antimicrobial stewardship.
Appendix
Available only for authorised users
Literature
1.
go back to reference Esper FP, Spahlinger T, Zhou L. Rate and influence of respiratory virus co-infection on pandemic (H1N1) influenza disease. J Inf Secur. 2011;63:260–6. Esper FP, Spahlinger T, Zhou L. Rate and influence of respiratory virus co-infection on pandemic (H1N1) influenza disease. J Inf Secur. 2011;63:260–6.
2.
go back to reference MacIntyre CR, Chughtai AA, Barnes M, Ridda I, Seale H, Toms R, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis. 2018;18:637.CrossRef MacIntyre CR, Chughtai AA, Barnes M, Ridda I, Seale H, Toms R, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis. 2018;18:637.CrossRef
3.
go back to reference Clancy CJ, Nguyen MH. Coronavirus disease 2019, superinfections, and antimicrobial development: what can we expect? Clin Infect Dis. 2020; [online ahead of print]. Clancy CJ, Nguyen MH. Coronavirus disease 2019, superinfections, and antimicrobial development: what can we expect? Clin Infect Dis. 2020; [online ahead of print].
4.
go back to reference Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71:2459–68.PubMed Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71:2459–68.PubMed
6.
go back to reference Rawson TM, Ming D, Ahmad R, Moore LSP, Holmes AH. Antimicrobial use, drug-resistant infections, and COVID-19. Nat Rev Microbiol. 2020;18:409–10.CrossRef Rawson TM, Ming D, Ahmad R, Moore LSP, Holmes AH. Antimicrobial use, drug-resistant infections, and COVID-19. Nat Rev Microbiol. 2020;18:409–10.CrossRef
7.
go back to reference McCann E, Srinivasan A, DeRyke CA, Ye G, DePestel DD, Murray J, et al. Carbapenem non-susceptible Gram-negative pathogens in ICU and non-ICU Settings in US hospitals in 2017: A multicenter study. Open Forum Infect Dis. 2018;5:ofy241.CrossRef McCann E, Srinivasan A, DeRyke CA, Ye G, DePestel DD, Murray J, et al. Carbapenem non-susceptible Gram-negative pathogens in ICU and non-ICU Settings in US hospitals in 2017: A multicenter study. Open Forum Infect Dis. 2018;5:ofy241.CrossRef
8.
go back to reference Gupta V, Ye G, Olesky M, Lawrence K, Murray J, Yu K. National prevalence estimates for resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States. Int J Infect Dis. 2019;85:203–11.CrossRef Gupta V, Ye G, Olesky M, Lawrence K, Murray J, Yu K. National prevalence estimates for resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States. Int J Infect Dis. 2019;85:203–11.CrossRef
9.
go back to reference Tabak YP, Srinivasan A, Yu K, et al. Hospital-level high-risk antibiotic use in relation to hospital-associated Clostridioides difficile infections: retrospective analysis of 2016-2017 data from US hospitals. Infect Control Hosp Epidemiol. 2019;40:1229–35.CrossRef Tabak YP, Srinivasan A, Yu K, et al. Hospital-level high-risk antibiotic use in relation to hospital-associated Clostridioides difficile infections: retrospective analysis of 2016-2017 data from US hospitals. Infect Control Hosp Epidemiol. 2019;40:1229–35.CrossRef
10.
go back to reference Brossette SE, Hacek DM, Gavin PJ, Kamdar MA, Gadbois KD, Fisher AG, et al. A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance? Am J Clin Pathol. 2006;125:34–9.CrossRef Brossette SE, Hacek DM, Gavin PJ, Kamdar MA, Gadbois KD, Fisher AG, et al. A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance? Am J Clin Pathol. 2006;125:34–9.CrossRef
11.
go back to reference Sepulveda J, Westblade LF, Whittier S, Satlin MJ, Greendyke WG, Aaron JG, et al. Bacteremia and blood culture utilization during COVID-19 surge in New York City. J Clin Microbiol. 2020;58:e00875-20. Sepulveda J, Westblade LF, Whittier S, Satlin MJ, Greendyke WG, Aaron JG, et al. Bacteremia and blood culture utilization during COVID-19 surge in New York City. J Clin Microbiol. 2020;58:e00875-20.
12.
go back to reference Hazra A, Collison M, Pisano J, Kumar M, Oehler C, Ridgway JP. Coinfections with SARS-CoV-2 and other respiratory pathogens. Infect Control Hosp Epidemiol. 2020;41:1228-9. Hazra A, Collison M, Pisano J, Kumar M, Oehler C, Ridgway JP. Coinfections with SARS-CoV-2 and other respiratory pathogens. Infect Control Hosp Epidemiol. 2020;41:1228-9.
13.
go back to reference Hughes S, Troise O, Donaldson H, Mughal N, Moore LS. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary care setting. Clin Microbiol Infect. 2020;26:1395-99. Hughes S, Troise O, Donaldson H, Mughal N, Moore LS. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary care setting. Clin Microbiol Infect. 2020;26:1395-99.
14.
go back to reference Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA. 2020;323:2085-86. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA. 2020;323:2085-86.
15.
go back to reference Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–9.CrossRef Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–9.CrossRef
16.
go back to reference CDC COVID-19 Response Team. Geographic differences in COVID-19 cases, deaths, and incidence – United States, February 12–April 7, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:465–71.CrossRef CDC COVID-19 Response Team. Geographic differences in COVID-19 cases, deaths, and incidence – United States, February 12–April 7, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:465–71.CrossRef
17.
go back to reference Wang Y, Liu Y, Struthers J, Lian M. Spatiotemporal characteristics of COVID-19 epidemic in the United States. Clin Infect Dis. 2020; [online ahead of print]. Wang Y, Liu Y, Struthers J, Lian M. Spatiotemporal characteristics of COVID-19 epidemic in the United States. Clin Infect Dis. 2020; [online ahead of print].
18.
go back to reference Myers CA, Slack T, Broyles ST, Heymsfield SB, Church TS, Martin CK. Diabetes prevalence is associated with different community factors in the diabetes belt versus the rest of the United States. Obesity. 2017;25:452–9.CrossRef Myers CA, Slack T, Broyles ST, Heymsfield SB, Church TS, Martin CK. Diabetes prevalence is associated with different community factors in the diabetes belt versus the rest of the United States. Obesity. 2017;25:452–9.CrossRef
19.
go back to reference Ader F. Interaction between Pseudomonas aeruginosa and Candida albicans in the respiratory tract of critically ill patients. Curr Respir Med Rev. 2010;6:15–8.CrossRef Ader F. Interaction between Pseudomonas aeruginosa and Candida albicans in the respiratory tract of critically ill patients. Curr Respir Med Rev. 2010;6:15–8.CrossRef
20.
go back to reference Marr KA, Platt A, Tornheim JA, Zhang SX, Datta K, Cardozo C, et al. Aspergillosis complicating severe coronavirus disease. Emerg Infect Dis. 2021;27:18–25.CrossRef Marr KA, Platt A, Tornheim JA, Zhang SX, Datta K, Cardozo C, et al. Aspergillosis complicating severe coronavirus disease. Emerg Infect Dis. 2021;27:18–25.CrossRef
21.
go back to reference Machado M, Valerio M, Álvarez-Uría A, Olmedo M, Veintimilla C, Padilla B, et al. Invasive pulmonary aspergillosis in the COVID-19 era: an expected new entity. Mycoses. 2020;64:132-43. Machado M, Valerio M, Álvarez-Uría A, Olmedo M, Veintimilla C, Padilla B, et al. Invasive pulmonary aspergillosis in the COVID-19 era: an expected new entity. Mycoses. 2020;64:132-43.
22.
go back to reference Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.CrossRef Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.CrossRef
23.
go back to reference Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patient with coronavirus diseases 2019 (COVID-19). Front Immunol. 2020;11:827.CrossRef Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patient with coronavirus diseases 2019 (COVID-19). Front Immunol. 2020;11:827.CrossRef
25.
go back to reference Adams JG, Walls RM. Supporting the health care workforce during the COVID-19 global epidemic. JAMA. 2020;323:1439–40.CrossRef Adams JG, Walls RM. Supporting the health care workforce during the COVID-19 global epidemic. JAMA. 2020;323:1439–40.CrossRef
26.
go back to reference Reddy SC, Valderrama AL, Kuhar DT. Improving the use of personal protective equipment: applying lessons learned. Clin Infect Dis. 2019;69(Suppl 3):S165–70.CrossRef Reddy SC, Valderrama AL, Kuhar DT. Improving the use of personal protective equipment: applying lessons learned. Clin Infect Dis. 2019;69(Suppl 3):S165–70.CrossRef
27.
go back to reference Centers for Disease Control and Prevention (CDC). Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) – United States, May–August 2009. MMWR Morb Mortal Wkly Rep. 2009;58:1071–4. Centers for Disease Control and Prevention (CDC). Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) – United States, May–August 2009. MMWR Morb Mortal Wkly Rep. 2009;58:1071–4.
28.
go back to reference Dudoignon E, Caméléna F, Deniau B, Habay A, Coutrot M, Ressaire Q, et al. Bacterial pneumonia in COVID-19 critically ill patients: a case series. Clin Infect Dis. 2020; [online ahead of print]. Dudoignon E, Caméléna F, Deniau B, Habay A, Coutrot M, Ressaire Q, et al. Bacterial pneumonia in COVID-19 critically ill patients: a case series. Clin Infect Dis. 2020; [online ahead of print].
29.
go back to reference Nguyen T, Kyle UG, Jaimon N, Tcharmtchi MH, Coss-Bu JA, Lam F, et al. Coinfection with staphylococcus aureus increases risk of severe coagulopathy in critically ill children with influenza A (H1N1) virus infection. Crit Care Med. 2012;40:3246–50.CrossRef Nguyen T, Kyle UG, Jaimon N, Tcharmtchi MH, Coss-Bu JA, Lam F, et al. Coinfection with staphylococcus aureus increases risk of severe coagulopathy in critically ill children with influenza A (H1N1) virus infection. Crit Care Med. 2012;40:3246–50.CrossRef
30.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.CrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.CrossRef
31.
go back to reference Nori P, Cowman K, Chen V, Bartash R, Szymczak W, Madaline T, et al. Bacterial and fungal co-infections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol. 2021;42:84–8.CrossRef Nori P, Cowman K, Chen V, Bartash R, Szymczak W, Madaline T, et al. Bacterial and fungal co-infections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol. 2021;42:84–8.CrossRef
32.
go back to reference Vaughn VM, Gandhi T, Petty LA, Patel PK, Prescott HC, Malani AN, et al. Empiric antibacterial therapy and community-onset bacterial co-infection in patients hospitalized with COVID-19: a multi-hospital cohort study. Clin Infect Dis. 2020; [online ahead of print]. Vaughn VM, Gandhi T, Petty LA, Patel PK, Prescott HC, Malani AN, et al. Empiric antibacterial therapy and community-onset bacterial co-infection in patients hospitalized with COVID-19: a multi-hospital cohort study. Clin Infect Dis. 2020; [online ahead of print].
33.
go back to reference Wong HYF, Lam HYS, Fong AH, Leung ST, Chin TWY, Lo CSY, et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology. 2020;296:E72–8.CrossRef Wong HYF, Lam HYS, Fong AH, Leung ST, Chin TWY, Lo CSY, et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology. 2020;296:E72–8.CrossRef
34.
go back to reference Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56:105949.CrossRef Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56:105949.CrossRef
35.
go back to reference Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382:2411–8.CrossRef Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382:2411–8.CrossRef
36.
go back to reference Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1036–41.CrossRef Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1036–41.CrossRef
37.
go back to reference Ward S, Lindsley A, Courter J, Assa’ad A. Clinical testing for COVID-19. J Allergy Clin Immunol. 2020;146:23–34.CrossRef Ward S, Lindsley A, Courter J, Assa’ad A. Clinical testing for COVID-19. J Allergy Clin Immunol. 2020;146:23–34.CrossRef
38.
go back to reference Bauer KA, Kullar R, Gilchrist M, File TM Jr. Antibiotics and adverse events: the role of antimicrobial stewardship programs in ‘doing no harm’. Curr Opin Infect Dis. 2019;32:553–8.CrossRef Bauer KA, Kullar R, Gilchrist M, File TM Jr. Antibiotics and adverse events: the role of antimicrobial stewardship programs in ‘doing no harm’. Curr Opin Infect Dis. 2019;32:553–8.CrossRef
39.
go back to reference Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173:262–7.CrossRef Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173:262–7.CrossRef
40.
go back to reference Green DA, Zucker J, Westblade LF, Whittier S, Rennert H, Velu P, et al. Clinical performance of SARS-CoV-2 molecular testing. J Clin Microbiol. 2020;58:e0995–20.CrossRef Green DA, Zucker J, Westblade LF, Whittier S, Rennert H, Velu P, et al. Clinical performance of SARS-CoV-2 molecular testing. J Clin Microbiol. 2020;58:e0995–20.CrossRef
Metadata
Title
A multicenter analysis of the clinical microbiology and antimicrobial usage in hospitalized patients in the US with or without COVID-19
Authors
Laura Puzniak
Lyn Finelli
Kalvin C. Yu
Karri A. Bauer
Pamela Moise
Carisa De Anda
Latha Vankeepuram
Aryana Sepassi
Vikas Gupta
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-05877-3

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue