Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | HIV Drug | Research article

The S68G polymorphism is a compensatory mutation associated with the drug resistance mutation K65R in CRF01_AE strains

Authors: Shengjia Li, Jinming Ouyang, Bin Zhao, Minghui An, Lin Wang, Haibo Ding, Min Zhang, Xiaoxu Han

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

The rate of S68G mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase has increased and is closely related to the K65R mutation among CRF01_AE-infected patients who failed treatment. We aimed to explore the temporal association of S68G and K65R mutations and disclose the role of the former on susceptibility to nucleotide/nucleoside reverse transcriptase inhibitor (NRTI) and viral replication with the K65R double mutations among CRF01_AE-infected patients who failed treatment.

Methods

The occurrence of S68G and K65R mutations was evaluated among HIV-1 of various subtypes in the global HIV Drug Resistance Database. The temporal association of S68G and K65R mutations was analyzed through next-generation sequencing in four CRF01_AE-infected patients who failed treatment with tenofovir/lamivudine/efavirenz. The impact of the S68G mutation on susceptibility to NRTI and replication fitness was analyzed using pseudovirus phenotypic resistance assays and growth competition assays, respectively.

Results

The frequency of the S68G mutation increased by 1.4–9.7% in almost all HIV subtypes and circulating recombinant forms in treatment-experienced patients, except subtype F. The S68G mutation often occurred in conjunction with the K65R mutation among RTI-treated patients, with frequencies ranging 21.1–61.7% in various subtypes. Next-generation sequencing revealed that the S68G mutation occurred following the K65R mutation in three of the four CRF01_AE-infected patients. In these three patients, there was no significant change detected in the half maximal inhibitory concentration for zidovudine, tenofovir, or lamivudine between the K65R and K65R/S68G mutations, as demonstrated by the phenotypic resistance assays. Virus stocks of the K65R and K65R/S68G mutations were mixed with 4:6, 1:1, and 9:1 and cultured for 13 days, the K65R/S68G mutants outgrew those of the K65R mutants irrespective of the input ratio.

Conclusions

S68G may be a natural polymorphism and compensatory mutation of K65R selected by NRTIs in the CRF01_AE strain of HIV-1. This mutation does not affect susceptibility to NRTI; however, it improves the replication fitness of K65R mutants. This study deciphers the role of the S68G mutation in the HIV reverse transcriptase of the CRF01_AE strain and provides new evidence for the interpretation of drug-resistant mutations in non-B subtypes of HIV-1.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S, Williams B, Gouws-Williams E, Ghys PD. Characterisation W-UNfHI: global and regional molecular epidemiology of HIV-1, 1990-2015: a systematic review, global survey, and trend analysis. Lancet Infect Dis. 2019;19(2):143–55.CrossRef Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S, Williams B, Gouws-Williams E, Ghys PD. Characterisation W-UNfHI: global and regional molecular epidemiology of HIV-1, 1990-2015: a systematic review, global survey, and trend analysis. Lancet Infect Dis. 2019;19(2):143–55.CrossRef
2.
go back to reference Kantor R, Katzenstein D. Drug resistance in non-subtype B HIV-1. J Clin Virol. 2004;29(3):152–9.CrossRef Kantor R, Katzenstein D. Drug resistance in non-subtype B HIV-1. J Clin Virol. 2004;29(3):152–9.CrossRef
3.
go back to reference Snoeck J, Kantor R, Shafer RW, Van Laethem K, Deforche K, Carvalho AP, Wynhoven B, Soares MA, Cane P, Clarke J, et al. Discordances between interpretation algorithms for genotypic resistance to protease and reverse transcriptase inhibitors of human immunodeficiency virus are subtype dependent. Antimicrob Agents Chemother. 2006;50(2):694–701.CrossRef Snoeck J, Kantor R, Shafer RW, Van Laethem K, Deforche K, Carvalho AP, Wynhoven B, Soares MA, Cane P, Clarke J, et al. Discordances between interpretation algorithms for genotypic resistance to protease and reverse transcriptase inhibitors of human immunodeficiency virus are subtype dependent. Antimicrob Agents Chemother. 2006;50(2):694–701.CrossRef
4.
go back to reference Brenner B, Turner D, Oliveira M, Moisi D, Detorio M, Carobene M, Marlink RG, Schapiro J, Roger M, Wainberg MA. A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors. AIDS. 2003;17(1):F1–5.CrossRef Brenner B, Turner D, Oliveira M, Moisi D, Detorio M, Carobene M, Marlink RG, Schapiro J, Roger M, Wainberg MA. A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors. AIDS. 2003;17(1):F1–5.CrossRef
5.
go back to reference Martinez-Cajas JL, Wainberg MA, Oliveira M, Asahchop EL, Doualla-Bell F, Lisovsky I, Moisi D, Mendelson E, Grossman Z, Brenner BG. The role of polymorphisms at position 89 in the HIV-1 protease gene in the development of drug resistance to HIV-1 protease inhibitors. J Antimicrob Chemother. 2012;67(4):988–94.CrossRef Martinez-Cajas JL, Wainberg MA, Oliveira M, Asahchop EL, Doualla-Bell F, Lisovsky I, Moisi D, Mendelson E, Grossman Z, Brenner BG. The role of polymorphisms at position 89 in the HIV-1 protease gene in the development of drug resistance to HIV-1 protease inhibitors. J Antimicrob Chemother. 2012;67(4):988–94.CrossRef
6.
go back to reference Holguin A, Sune C, Hamy F, Soriano V, Klimkait T. Natural polymorphisms in the protease gene modulate the replicative capacity of non-B HIV-1 variants in the absence of drug pressure. J Clin Virol. 2006;36(4):264–71.CrossRef Holguin A, Sune C, Hamy F, Soriano V, Klimkait T. Natural polymorphisms in the protease gene modulate the replicative capacity of non-B HIV-1 variants in the absence of drug pressure. J Clin Virol. 2006;36(4):264–71.CrossRef
7.
go back to reference Santos AF, Tebit DM, Lalonde MS, Abecasis AB, Ratcliff A, Camacho RJ, Diaz RS, Herchenroder O, Soares MA, Arts EJ. Effect of natural polymorphisms in the HIV-1 CRF02_AG protease on protease inhibitor hypersusceptibility. Antimicrob Agents Chemother. 2012;56(5):2719–25.CrossRef Santos AF, Tebit DM, Lalonde MS, Abecasis AB, Ratcliff A, Camacho RJ, Diaz RS, Herchenroder O, Soares MA, Arts EJ. Effect of natural polymorphisms in the HIV-1 CRF02_AG protease on protease inhibitor hypersusceptibility. Antimicrob Agents Chemother. 2012;56(5):2719–25.CrossRef
8.
go back to reference Gao F, Robertson DL, Morrison SG, Hui H, Craig S, Decker J, Fultz PN, Girard M, Shaw GM, Hahn BH, et al. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol. 1996;70(10):7013–29.CrossRef Gao F, Robertson DL, Morrison SG, Hui H, Craig S, Decker J, Fultz PN, Girard M, Shaw GM, Hahn BH, et al. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol. 1996;70(10):7013–29.CrossRef
9.
go back to reference Lau KA, Wong JJ. Current trends of HIV recombination worldwide. Infect Dis Rep. 2013;5(Suppl 1):e4.CrossRef Lau KA, Wong JJ. Current trends of HIV recombination worldwide. Infect Dis Rep. 2013;5(Suppl 1):e4.CrossRef
10.
go back to reference Ode H, Matsuyama S, Hata M, Hoshino T, Kakizawa J, Sugiura W. Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations. J Med Chem. 2007;50(8):1768–77.CrossRef Ode H, Matsuyama S, Hata M, Hoshino T, Kakizawa J, Sugiura W. Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations. J Med Chem. 2007;50(8):1768–77.CrossRef
11.
go back to reference Delviks-Frankenberry KA, Nikolenko GN, Maldarelli F, Hase S, Takebe Y, Pathak VK. Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3′-azido-3′-deoxythymidine. J Virol. 2009;83(17):8502–13.CrossRef Delviks-Frankenberry KA, Nikolenko GN, Maldarelli F, Hase S, Takebe Y, Pathak VK. Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3′-azido-3′-deoxythymidine. J Virol. 2009;83(17):8502–13.CrossRef
12.
go back to reference Tanuma J, Hachiya A, Ishigaki K, Gatanaga H, Lien TT, Hien ND, Kinh NV, Kaku M, Oka S. Impact of CRF01_AE-specific polymorphic mutations G335D and A371V in the connection subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) on susceptibility to nucleoside RT inhibitors. Microbes Infect. 2010;12(14–15):1170–7.CrossRef Tanuma J, Hachiya A, Ishigaki K, Gatanaga H, Lien TT, Hien ND, Kinh NV, Kaku M, Oka S. Impact of CRF01_AE-specific polymorphic mutations G335D and A371V in the connection subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) on susceptibility to nucleoside RT inhibitors. Microbes Infect. 2010;12(14–15):1170–7.CrossRef
13.
go back to reference Taylor T, Lee ER, Nykoluk M, Enns E, Liang B, Capina R, Gauthier MK, Domselaar GV, Sandstrom P, Brooks J, et al. A MiSeq-HyDRA platform for enhanced HIV drug resistance genotyping and surveillance. Sci Rep. 2019;9(1):8970.CrossRef Taylor T, Lee ER, Nykoluk M, Enns E, Liang B, Capina R, Gauthier MK, Domselaar GV, Sandstrom P, Brooks J, et al. A MiSeq-HyDRA platform for enhanced HIV drug resistance genotyping and surveillance. Sci Rep. 2019;9(1):8970.CrossRef
14.
go back to reference Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, Huang W, Tian H, Smith D, Winslow GA, Capon DJ, et al. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2000;44(4):920–8.CrossRef Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, Huang W, Tian H, Smith D, Winslow GA, Capon DJ, et al. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2000;44(4):920–8.CrossRef
15.
go back to reference Hamilton MA, Russo RC, Thurston RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol. 1977;11(7):714–9.CrossRef Hamilton MA, Russo RC, Thurston RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol. 1977;11(7):714–9.CrossRef
16.
go back to reference Manocheewa S, Lanxon-Cookson EC, Liu Y, Swain JV, McClure J, Rao U, Maust B, Deng W, Sunshine JE, Kim M, et al. Pairwise growth competition assay for determining the replication fitness of human immunodeficiency viruses. J Vis Exp. 2015;99:e52610. Manocheewa S, Lanxon-Cookson EC, Liu Y, Swain JV, McClure J, Rao U, Maust B, Deng W, Sunshine JE, Kim M, et al. Pairwise growth competition assay for determining the replication fitness of human immunodeficiency viruses. J Vis Exp. 2015;99:e52610.
17.
go back to reference Monno L, Scudeller L, Brindicci G, Saracino A, Punzi G, Chirianni A, Lagioia A, Ladisa N, Lo Caputo S, Angarano G. Genotypic analysis of the protease and reverse transcriptase of non-B HIV type 1 clinical isolates from naive and treated subjects. Antivir Res. 2009;83(2):118–26.CrossRef Monno L, Scudeller L, Brindicci G, Saracino A, Punzi G, Chirianni A, Lagioia A, Ladisa N, Lo Caputo S, Angarano G. Genotypic analysis of the protease and reverse transcriptase of non-B HIV type 1 clinical isolates from naive and treated subjects. Antivir Res. 2009;83(2):118–26.CrossRef
18.
go back to reference Rhee SY, Varghese V, Holmes SP, Van Zyl GU, Steegen K, Boyd MA, Cooper DA, Nsanzimana S, Saravanan S, Charpentier C, et al. Mutational correlates of Virological failure in individuals receiving a WHO-recommended Tenofovir-containing first-line regimen: an international collaboration. EBioMedicine. 2017;18:225–35.CrossRef Rhee SY, Varghese V, Holmes SP, Van Zyl GU, Steegen K, Boyd MA, Cooper DA, Nsanzimana S, Saravanan S, Charpentier C, et al. Mutational correlates of Virological failure in individuals receiving a WHO-recommended Tenofovir-containing first-line regimen: an international collaboration. EBioMedicine. 2017;18:225–35.CrossRef
19.
go back to reference Winters MA, Shafer RW, Jellinger RA, Mamtora G, Gingeras T, Merigan TC. Human immunodeficiency virus type 1 reverse transcriptase genotype and drug susceptibility changes in infected individuals receiving dideoxyinosine monotherapy for 1 to 2 years. Antimicrob Agents Chemother. 1997;41(4):757–62.CrossRef Winters MA, Shafer RW, Jellinger RA, Mamtora G, Gingeras T, Merigan TC. Human immunodeficiency virus type 1 reverse transcriptase genotype and drug susceptibility changes in infected individuals receiving dideoxyinosine monotherapy for 1 to 2 years. Antimicrob Agents Chemother. 1997;41(4):757–62.CrossRef
20.
go back to reference Roge BT, Katzenstein TL, Obel N, Nielsen H, Kirk O, Pedersen C, Mathiesen L, Lundgren J, Gerstoft J. K65R with and without S68: a new resistance profile in vivo detected in most patients failing abacavir, didanosine and stavudine. Antivir Ther. 2003;8(2):173–82.PubMed Roge BT, Katzenstein TL, Obel N, Nielsen H, Kirk O, Pedersen C, Mathiesen L, Lundgren J, Gerstoft J. K65R with and without S68: a new resistance profile in vivo detected in most patients failing abacavir, didanosine and stavudine. Antivir Ther. 2003;8(2):173–82.PubMed
21.
go back to reference Doualla-Bell F, Avalos A, Brenner B, Gaolathe T, Mine M, Gaseitsiwe S, Oliveira M, Moisi D, Ndwapi N, Moffat H, et al. High prevalence of the K65R mutation in human immunodeficiency virus type 1 subtype C isolates from infected patients in Botswana treated with didanosine-based regimens. Antimicrob Agents Chemother. 2006;50(12):4182–5.CrossRef Doualla-Bell F, Avalos A, Brenner B, Gaolathe T, Mine M, Gaseitsiwe S, Oliveira M, Moisi D, Ndwapi N, Moffat H, et al. High prevalence of the K65R mutation in human immunodeficiency virus type 1 subtype C isolates from infected patients in Botswana treated with didanosine-based regimens. Antimicrob Agents Chemother. 2006;50(12):4182–5.CrossRef
22.
go back to reference McColl DJ, Chappey C, Parkin NT, Miller MD. Prevalence, genotypic associations and phenotypic characterization of K65R, L74V and other HIV-1 RT resistance mutations in a commercial database. Antivir Ther. 2008;13(2):189–97.PubMed McColl DJ, Chappey C, Parkin NT, Miller MD. Prevalence, genotypic associations and phenotypic characterization of K65R, L74V and other HIV-1 RT resistance mutations in a commercial database. Antivir Ther. 2008;13(2):189–97.PubMed
23.
go back to reference Ross LL, Gerondelis P, Liao Q, Wine B, Lim M, Shaefer M, Rodriguez A, Gallant J, Lanier R. Selection for S68G/N/D mutations of HIV-1 reverse transcriptase (RT) in antiretroviral-Naïve subjects treated with Tenofovir (TDF)/Abacavir (ABC)/lamivudine (3TC) therapy. Abstr Interscience Conf Antimicrob Agents Chemother. 2005;45:272. Ross LL, Gerondelis P, Liao Q, Wine B, Lim M, Shaefer M, Rodriguez A, Gallant J, Lanier R. Selection for S68G/N/D mutations of HIV-1 reverse transcriptase (RT) in antiretroviral-Naïve subjects treated with Tenofovir (TDF)/Abacavir (ABC)/lamivudine (3TC) therapy. Abstr Interscience Conf Antimicrob Agents Chemother. 2005;45:272.
24.
go back to reference Wirden M, Malet I, Derache A, Marcelin AG, Roquebert B, Simon A, Kirstetter M, Joubert LM, Katlama C, Calvez V. Clonal analyses of HIV quasispecies in patients harbouring plasma genotype with K65R mutation associated with thymidine analogue mutations or L74V substitution. AIDS. 2005;19(6):630–2.CrossRef Wirden M, Malet I, Derache A, Marcelin AG, Roquebert B, Simon A, Kirstetter M, Joubert LM, Katlama C, Calvez V. Clonal analyses of HIV quasispecies in patients harbouring plasma genotype with K65R mutation associated with thymidine analogue mutations or L74V substitution. AIDS. 2005;19(6):630–2.CrossRef
25.
go back to reference Larder BA, Kohli A, Kellam P, Kemp SD, Kronick M, Henfrey RD. Quantitative detection of HIV-1 drug resistance mutations by automated DNA sequencing. Nature. 1993;365(6447):671–3.CrossRef Larder BA, Kohli A, Kellam P, Kemp SD, Kronick M, Henfrey RD. Quantitative detection of HIV-1 drug resistance mutations by automated DNA sequencing. Nature. 1993;365(6447):671–3.CrossRef
26.
go back to reference Gibson RM, Schmotzer CL, Quinones-Mateu ME. Next-generation sequencing to help monitor patients infected with HIV: ready for clinical use? Curr Infect Dis Rep. 2014;16(4):401.CrossRef Gibson RM, Schmotzer CL, Quinones-Mateu ME. Next-generation sequencing to help monitor patients infected with HIV: ready for clinical use? Curr Infect Dis Rep. 2014;16(4):401.CrossRef
27.
go back to reference Svarovskaia ES, Feng JY, Margot NA, Myrick F, Goodman D, Ly JK, White KL, Kutty N, Wang R, Borroto-Esoda K, et al. The A62V and S68G mutations in HIV-1 reverse transcriptase partially restore the replication defect associated with the K65R mutation. J Acquir Immune Defic Syndr. 2008;48(4):428–36.CrossRef Svarovskaia ES, Feng JY, Margot NA, Myrick F, Goodman D, Ly JK, White KL, Kutty N, Wang R, Borroto-Esoda K, et al. The A62V and S68G mutations in HIV-1 reverse transcriptase partially restore the replication defect associated with the K65R mutation. J Acquir Immune Defic Syndr. 2008;48(4):428–36.CrossRef
28.
go back to reference Garforth SJ, Lwatula C, Prasad VR. The lysine 65 residue in HIV-1 reverse transcriptase function and in nucleoside analog drug resistance. Viruses. 2014;6(10):4080–94.CrossRef Garforth SJ, Lwatula C, Prasad VR. The lysine 65 residue in HIV-1 reverse transcriptase function and in nucleoside analog drug resistance. Viruses. 2014;6(10):4080–94.CrossRef
29.
go back to reference Gu Z, Arts EJ, Parniak MA, Wainberg MA. Mutated K65R recombinant reverse transcriptase of human immunodeficiency virus type 1 shows diminished chain termination in the presence of 2′,3′-dideoxycytidine 5′-triphosphate and other drugs. Proc Natl Acad Sci U S A. 1995;92(7):2760–4.CrossRef Gu Z, Arts EJ, Parniak MA, Wainberg MA. Mutated K65R recombinant reverse transcriptase of human immunodeficiency virus type 1 shows diminished chain termination in the presence of 2′,3′-dideoxycytidine 5′-triphosphate and other drugs. Proc Natl Acad Sci U S A. 1995;92(7):2760–4.CrossRef
30.
go back to reference Shah FS, Curr KA, Hamburgh ME, Parniak M, Mitsuya H, Arnez JG, Prasad VR. Differential influence of nucleoside analog-resistance mutations K65R and L74V on the overall mutation rate and error specificity of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem. 2000;275(35):27037–44.PubMed Shah FS, Curr KA, Hamburgh ME, Parniak M, Mitsuya H, Arnez JG, Prasad VR. Differential influence of nucleoside analog-resistance mutations K65R and L74V on the overall mutation rate and error specificity of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem. 2000;275(35):27037–44.PubMed
31.
go back to reference Garforth SJ, Domaoal RA, Lwatula C, Landau MJ, Meyer AJ, Anderson KS, Prasad VR. K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol. 2010;401(1):33–44.CrossRef Garforth SJ, Domaoal RA, Lwatula C, Landau MJ, Meyer AJ, Anderson KS, Prasad VR. K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol. 2010;401(1):33–44.CrossRef
32.
33.
go back to reference Theys K, Deforche K, Vercauteren J, Libin P, van de Vijver DA, Albert J, Asjo B, Balotta C, Bruckova M, Camacho RJ, et al. Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients. Retrovirology. 2012;9:81.CrossRef Theys K, Deforche K, Vercauteren J, Libin P, van de Vijver DA, Albert J, Asjo B, Balotta C, Bruckova M, Camacho RJ, et al. Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients. Retrovirology. 2012;9:81.CrossRef
34.
go back to reference Theys K, Abecasis AB, Vandamme AM. HIV-1 drug resistance: where do polymorphisms fit in? Future Microbiol. 2013;8(3):303–6.CrossRef Theys K, Abecasis AB, Vandamme AM. HIV-1 drug resistance: where do polymorphisms fit in? Future Microbiol. 2013;8(3):303–6.CrossRef
35.
go back to reference Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci U S A. 2007;104(44):17441–6.CrossRef Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci U S A. 2007;104(44):17441–6.CrossRef
Metadata
Title
The S68G polymorphism is a compensatory mutation associated with the drug resistance mutation K65R in CRF01_AE strains
Authors
Shengjia Li
Jinming Ouyang
Bin Zhao
Minghui An
Lin Wang
Haibo Ding
Min Zhang
Xiaoxu Han
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-4836-z

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue