Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

01-12-2021 | SARS-CoV-2 | Research article

JAK-inhibitor and type I interferon ability to produce favorable clinical outcomes in COVID-19 patients: a systematic review and meta-analysis

Authors: Lucas Walz, Avi J. Cohen, Andre P. Rebaza, James Vanchieri, Martin D. Slade, Charles S. Dela Cruz, Lokesh Sharma

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

The spread of a highly pathogenic, novel coronavirus (SARS-CoV-2) has emerged as a once-in-a-century pandemic, having already infected over 63 million people worldwide. Novel therapies are urgently needed. Janus kinase-inhibitors and Type I interferons have emerged as potential antiviral candidates for COVID-19 patients due to their proven efficacy against diseases with excessive cytokine release and their direct antiviral ability against viruses including coronaviruses, respectively.

Methods

A search of MEDLINE and MedRxiv was conducted by three investigators from inception until July 30th 2020 and included any study type that compared treatment outcomes of humans treated with Janus kinase-inhibitor or Type I interferon against controls. Inclusion necessitated data with clearly indicated risk estimates or those that permitted their back-calculation. Outcomes were synthesized using RevMan.

Results

Of 733 searched studies, we included four randomized and eleven non-randomized trials. Five of the studies were unpublished. Those who received Janus kinase-inhibitor had significantly reduced odds of mortality (OR, 0.12; 95% CI, 0.03–0.39, p< 0.001) and ICU admission (OR, 0.05; 95% CI, 0.01–0.26, p< 0.001), and had significantly increased odds of hospital discharge (OR, 22.76; 95% CI, 10.68–48.54, p< 0.00001) when compared to standard treatment group. Type I interferon recipients had significantly reduced odds of mortality (OR, 0.19; 95% CI, 0.04–0.85, p< 0.05), and increased odds of discharge bordering significance (OR, 1.89; 95% CI, 1.00–3.59, p=0.05).

Conclusions

Janus kinase-inhibitor treatment is significantly associated with positive clinical outcomes in terms of mortality, ICU admission, and discharge. Type I interferon treatment is associated with positive clinical outcomes in regard to mortality and discharge. While these data show promise, additional well-conducted RCTs are needed to further elucidate the relationship between clinical outcomes and Janus kinase-inhibitors and Type I interferons in COVID-19 patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gates B. Responding to Covid-19 — a once-in-a-century pandemic? N Engl J Med. 2020;382(18):1677–9.PubMed Gates B. Responding to Covid-19 — a once-in-a-century pandemic? N Engl J Med. 2020;382(18):1677–9.PubMed
2.
go back to reference Emanuel EJ, Persad G, Upshur R, et al. Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. 2020;382(21):2049–55.PubMed Emanuel EJ, Persad G, Upshur R, et al. Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. 2020;382(21):2049–55.PubMed
3.
go back to reference Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372–4.PubMed Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372–4.PubMed
5.
go back to reference Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 — preliminary report. N Engl J Med. 2020;383:992–4. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 — preliminary report. N Engl J Med. 2020;383:992–4.
7.
go back to reference Bertsias G. Therapeutic targeting of JAKs: from hematology to rheumatology and from the first to the second generation of JAK inhibitors. Mediterr J Rheumatol. 2020;31(Suppl 1):105–11 PubMed PMID: PMC7361188. eng.PubMedPubMedCentral Bertsias G. Therapeutic targeting of JAKs: from hematology to rheumatology and from the first to the second generation of JAK inhibitors. Mediterr J Rheumatol. 2020;31(Suppl 1):105–11 PubMed PMID: PMC7361188. eng.PubMedPubMedCentral
10.
go back to reference La Rosée F, Bremer HC, Gehrke I, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34(7):1805–15.PubMedPubMedCentral La Rosée F, Bremer HC, Gehrke I, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34(7):1805–15.PubMedPubMedCentral
11.
go back to reference Zhang X, Zhang Y, Qiao W, et al. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol. 2020;86:106749 PubMed PMID: PMC7328558. Epub 2020/07/01. eng.PubMedPubMedCentral Zhang X, Zhang Y, Qiao W, et al. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol. 2020;86:106749 PubMed PMID: PMC7328558. Epub 2020/07/01. eng.PubMedPubMedCentral
12.
go back to reference Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49 PubMed PMID: 24362405. eng.PubMedPubMedCentral Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49 PubMed PMID: 24362405. eng.PubMedPubMedCentral
13.
go back to reference Wang BX, Fish EN. Global virus outbreaks: Interferons as 1st responders. Semin Immunol. 2019;43:101300 PubMed PMID: 31771760. eng.PubMedPubMedCentral Wang BX, Fish EN. Global virus outbreaks: Interferons as 1st responders. Semin Immunol. 2019;43:101300 PubMed PMID: 31771760. eng.PubMedPubMedCentral
14.
go back to reference Cornberg M, Wedemeyer H, Manns MP. Hepatitis C: therapeutic perspectives. Forum (Genova). 2001;11(2):154–62 PubMed PMID: 11948360. eng. Cornberg M, Wedemeyer H, Manns MP. Hepatitis C: therapeutic perspectives. Forum (Genova). 2001;11(2):154–62 PubMed PMID: 11948360. eng.
15.
go back to reference Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon Alfacon-1 plus corticosteroids in severe acute respiratory SyndromeA preliminary study. JAMA. 2003;290(24):3222–8.PubMed Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon Alfacon-1 plus corticosteroids in severe acute respiratory SyndromeA preliminary study. JAMA. 2003;290(24):3222–8.PubMed
16.
go back to reference Chan JFW, Chan K-H, Kao RYT, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Inf Secur. 2013;67(6):606–16 PubMed PMID: 24096239. Epub 2013/10/03. eng. Chan JFW, Chan K-H, Kao RYT, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Inf Secur. 2013;67(6):606–16 PubMed PMID: 24096239. Epub 2013/10/03. eng.
21.
go back to reference Dastan F, Nadji SA, Saffaei A, et al. Subcutaneous administration of interferon beta-1a for COVID-19: a non-controlled prospective trial. Int Immunopharmacol. 2020;85:106688 PubMed PMID: 32544867. Epub 2020/06/07. eng.PubMedPubMedCentral Dastan F, Nadji SA, Saffaei A, et al. Subcutaneous administration of interferon beta-1a for COVID-19: a non-controlled prospective trial. Int Immunopharmacol. 2020;85:106688 PubMed PMID: 32544867. Epub 2020/06/07. eng.PubMedPubMedCentral
22.
go back to reference Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.PubMedPubMedCentral Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.PubMedPubMedCentral
23.
go back to reference Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.PubMed Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.PubMed
24.
go back to reference Cook DA, Reed DA. Appraising the quality of medical education research methods: the medical education research study quality instrument and the Newcastle–Ottawa scale-education. Acad Med. 2015;90(8):1067–76 PubMed PMID: 00001888–201508000-00023.PubMed Cook DA, Reed DA. Appraising the quality of medical education research methods: the medical education research study quality instrument and the Newcastle–Ottawa scale-education. Acad Med. 2015;90(8):1067–76 PubMed PMID: 00001888–201508000-00023.PubMed
27.
go back to reference Cantini F, Niccoli L, Matarrese D, et al. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J Inf Secur. 2020:S0163–4453(20)30228–0 PubMed PMID: 32333918. eng. Cantini F, Niccoli L, Matarrese D, et al. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J Inf Secur. 2020:S0163–4453(20)30228–0 PubMed PMID: 32333918. eng.
28.
go back to reference Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020;146(1):137–46.e3 PubMed PMID: 32470486. Epub 2020/05/26. eng.PubMedPubMedCentral Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020;146(1):137–46.e3 PubMed PMID: 32470486. Epub 2020/05/26. eng.PubMedPubMedCentral
29.
go back to reference Giudice V, Pagliano P, Vatrella A, et al. Combination of Ruxolitinib and Eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Front Pharmacol. 2020;11:857 PubMed PMID: 32581810. eng.PubMedPubMedCentral Giudice V, Pagliano P, Vatrella A, et al. Combination of Ruxolitinib and Eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Front Pharmacol. 2020;11:857 PubMed PMID: 32581810. eng.PubMedPubMedCentral
31.
go back to reference Davoudi-Monfared E, Rahmani H, Khalili H, et al. Efficacy and safety of interferon β-1a in treatment of severe COVID-19: a randomized clinical trial. Antimicrob Agents Chemother. 2020:AAC.01061–20. Davoudi-Monfared E, Rahmani H, Khalili H, et al. Efficacy and safety of interferon β-1a in treatment of severe COVID-19: a randomized clinical trial. Antimicrob Agents Chemother. 2020:AAC.01061–20.
35.
go back to reference Hung IF-N, Lung K-C, Tso EY-K, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–704.PubMedPubMedCentral Hung IF-N, Lung K-C, Tso EY-K, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–704.PubMedPubMedCentral
36.
go back to reference Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183–91 PubMed PMID: 32173576. Epub 2020/03/12. eng.PubMedPubMedCentral Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183–91 PubMed PMID: 32173576. Epub 2020/03/12. eng.PubMedPubMedCentral
43.
go back to reference Wang J, Jiang M, Chen X, et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108(1):17–41 PubMed PMID: 32534467. Epub 2020/06/13. eng.PubMed Wang J, Jiang M, Chen X, et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108(1):17–41 PubMed PMID: 32534467. Epub 2020/06/13. eng.PubMed
45.
go back to reference Halfpenny NJA, Quigley JM, Thompson JC, Scott DA. Value and usability of unpublished data sources for systematic reviews and network meta-analyses. Evid Based Med. 2016;21(6):208–13.PubMed Halfpenny NJA, Quigley JM, Thompson JC, Scott DA. Value and usability of unpublished data sources for systematic reviews and network meta-analyses. Evid Based Med. 2016;21(6):208–13.PubMed
46.
go back to reference Cook DJ, Guyatt GH, Ryan G, Clifton J, Buckingham L, Willan A, et al. Should unpublished data be included in meta-analyses?: current convictions and controversies. JAMA. 1993;269(21):2749–53.PubMed Cook DJ, Guyatt GH, Ryan G, Clifton J, Buckingham L, Willan A, et al. Should unpublished data be included in meta-analyses?: current convictions and controversies. JAMA. 1993;269(21):2749–53.PubMed
Metadata
Title
JAK-inhibitor and type I interferon ability to produce favorable clinical outcomes in COVID-19 patients: a systematic review and meta-analysis
Authors
Lucas Walz
Avi J. Cohen
Andre P. Rebaza
James Vanchieri
Martin D. Slade
Charles S. Dela Cruz
Lokesh Sharma
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05730-z

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue