Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

Open Access 01-12-2020 | SARS-CoV-2 | Research article

Pooling for SARS-CoV-2 control in care institutions

Authors: Jorge Julio Cabrera Alvargonzalez, Sonia Rey Cao, Sonia Pérez Castro, Lucía Martinez Lamas, Olaia Cores Calvo, Julio Torres Piñon, Jacobo Porteiro Fresco, Julio Garcia Comesaña, Benito Regueiro Garcia

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Workers and residents in Care Homes are considered at special risk for the acquisition of SARS-CoV-2 infection, due to the infectivity and high mortality rate in the case of residents, compared to other containment areas. The role of presymptomatic people in transmission has been shown to be important and the early detection of these people is critical for the control of new outbreaks. Pooling strategies have proven to preserve SARS-CoV-2 testing resources.
The aims of the present study, based in our local experience, were (a) to describe SARS-CoV-2 prevalence in institutionalized people in Galicia (Spain) during the Coronavirus pandemic and (b) to evaluate the expected performance of a pooling strategy using RT-PCR for the next rounds of screening of institutionalized people.

Methods

A total of 25,386 Nasopharyngeal swab samples from the total of the residents and workers at Care Homes in Galicia (March to May 2020) were individually tested using RT-PCR. Prevalence and quantification cycle (Cq) value distribution of positives was calculated. Besides, 26 pools of 20 samples and 14 pools of 5 samples were tested using RT-PCR as well (1 positive/pool). Pooling proof of concept was performed in two populations with 1.7 and 2% prevalence.

Results

Distribution of SARS-CoV-2 infection at Care Homes was uneven (0–60%). As the virus circulation global rate was low in our area (3.32%), the number of people at risk of acquiring the infection continues to be very high. In this work, we have successfully demonstrated that pooling of different groups of samples at low prevalence clusters, can be done with a small average delay on Cq values (5 and 2.85 cycles for pools of 20 and 5 samples, respectively).

Conclusions

A new screening system with guaranteed protection is required for small clusters, previously covered with individual testing. Our proposal for Care Homes, once prevalence zero is achieved, would include successive rounds of testing using a pooling solution for transmission control preserving testing resources. Scale-up of this method may be of utility to confront larger clusters to avoid the viral circulation and keeping them operative.
Appendix
Available only for authorised users
Literature
2.
go back to reference Abdalhamid B, Bilder CR, McCutchen EL, Hinrichs SH, Koepsell SA, Iwen PC. Assessment of Specimen Pooling to Conserve SARS CoV-2 Testing Resources. Am J Clin Pathol 5. 2020;153(6):715–8.CrossRef Abdalhamid B, Bilder CR, McCutchen EL, Hinrichs SH, Koepsell SA, Iwen PC. Assessment of Specimen Pooling to Conserve SARS CoV-2 Testing Resources. Am J Clin Pathol 5. 2020;153(6):715–8.CrossRef
4.
go back to reference Sinnott-Armstrong N, Klein D, Hickey B. Evaluation of Group Testing for Sars-Cov-2 Rna. medRxiv. 2020:2020.03.27.20043968. Sinnott-Armstrong N, Klein D, Hickey B. Evaluation of Group Testing for Sars-Cov-2 Rna. medRxiv. 2020:2020.03.27.20043968.
5.
go back to reference Hogan CA, Sahoo MK, Pinsky BA. Sample Pooling as a strategy to detect community trensmission of SARS-CoV-2. JAMA. 2020;323(19):1967-9. Hogan CA, Sahoo MK, Pinsky BA. Sample Pooling as a strategy to detect community trensmission of SARS-CoV-2. JAMA. 2020;323(19):1967-9.
6.
go back to reference Yelin I, Aharony N, Shaer Tamar E, Argoetti A, Messer E, Berenbaum D, et al. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020. Yelin I, Aharony N, Shaer Tamar E, Argoetti A, Messer E, Berenbaum D, et al. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020.
7.
go back to reference Santiago I. Trends and Innovations in Biosensors for COVID-19 Mass Testing. Chembiochem Eur J Chem Biol. 2020. Santiago I. Trends and Innovations in Biosensors for COVID-19 Mass Testing. Chembiochem Eur J Chem Biol. 2020.
8.
go back to reference Ben-Ami R, Klochendler A, Seidel M, Sido T, Gurel-Gurevich O, Yassour M, et al. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2020. Ben-Ami R, Klochendler A, Seidel M, Sido T, Gurel-Gurevich O, Yassour M, et al. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2020.
9.
go back to reference Wacharapluesadee S, Kaewpom T, Ampoot W, Ghai S, Khamhang W, Worachotsueptrakun K, et al. Evaluating the Efficiency of Specimen Pooling for Pcr-Based Detection of Covid-19. J Med Virol. 2020. Wacharapluesadee S, Kaewpom T, Ampoot W, Ghai S, Khamhang W, Worachotsueptrakun K, et al. Evaluating the Efficiency of Specimen Pooling for Pcr-Based Detection of Covid-19. J Med Virol. 2020.
10.
go back to reference Torres I, Albert E, Navarro D. Pooling of Nasopharyngeal Swab Specimens for SARS-CoV-2 detection by RT-PCR. J Med Virol. 2020. Torres I, Albert E, Navarro D. Pooling of Nasopharyngeal Swab Specimens for SARS-CoV-2 detection by RT-PCR. J Med Virol. 2020.
13.
go back to reference Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance. 2020;25(17):2000257.CrossRef Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance. 2020;25(17):2000257.CrossRef
14.
go back to reference He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med mayo de. 2020;26(5):672–5.CrossRef He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med mayo de. 2020;26(5):672–5.CrossRef
15.
go back to reference Riou J, Althaus CL. Pattern of early human to human trensmission of Wuhan novel coronavirus (2019 nCoV2) December 2019 to january 2020. Euro Surveill. 2020;25(4):200058. Riou J, Althaus CL. Pattern of early human to human trensmission of Wuhan novel coronavirus (2019 nCoV2) December 2019 to january 2020. Euro Surveill. 2020;25(4):200058.
18.
go back to reference Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020. Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020.
19.
go back to reference Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020. Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020.
20.
go back to reference Artesi M, Bontems S, Gobbels P, Franckh M, Boreux R, Meex C, et al. Failure of the cobas® SARS-CoV-2 (Roche) E-gene assay is associated with a C-to-T transition at position 26340 of the SARS-CoV-2 genome. medRxiv. 2020:2020.04.28.20083337. Artesi M, Bontems S, Gobbels P, Franckh M, Boreux R, Meex C, et al. Failure of the cobas® SARS-CoV-2 (Roche) E-gene assay is associated with a C-to-T transition at position 26340 of the SARS-CoV-2 genome. medRxiv. 2020:2020.04.28.20083337.
21.
go back to reference Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2020;25(5). Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2020;25(5).
22.
go back to reference Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung S-M, et al. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J Clin Med. 2020;9(2). Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung S-M, et al. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J Clin Med. 2020;9(2).
24.
go back to reference Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–9.CrossRef Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–9.CrossRef
Metadata
Title
Pooling for SARS-CoV-2 control in care institutions
Authors
Jorge Julio Cabrera Alvargonzalez
Sonia Rey Cao
Sonia Pérez Castro
Lucía Martinez Lamas
Olaia Cores Calvo
Julio Torres Piñon
Jacobo Porteiro Fresco
Julio Garcia Comesaña
Benito Regueiro Garcia
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
SARS-CoV-2
Care
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05446-0

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue