Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

Open Access 01-12-2020 | Adenovirus | Research article

Impact of viral coinfection and macrolide-resistant mycoplasma infection in children with refractory Mycoplasma pneumoniae pneumonia

Authors: Yajuan Zhou, Jing Wang, Wenjuan Chen, Nan Shen, Yue Tao, Ruike Zhao, Lijuan Luo, Biru Li, Qing Cao

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Cases of refractory Mycoplasma pneumoniae pneumonia have been increasing recently; however, whether viral coinfection or macrolide-resistant M. infection contribute to the development of refractory M. pneumoniae pneumonia remains unclear. This study aimed to investigate the impacts of viral coinfection and macrolide-resistant M. pneumoniae infection on M. pneumoniae pneumonia in hospitalized children and build a model to predict a severe disease course.

Methods

Nasopharyngeal swabs or sputum specimens were collected from patients with community-acquired pneumonia meeting our protocol who were admitted to Shanghai Children’s Medical Center from December 1, 2016, to May 31, 2019. The specimens were tested with the FilmArray Respiratory Panel, a multiplex polymerase chain reaction assay that detects 16 viruses, Bordetella pertussis, M. pneumoniae, and Chlamydophila pneumoniae. Univariate and multivariate logistic regression models were used to identify the risk factors for adenovirus coinfection and macrolide-resistant mycoplasma infection.

Results

Among the 107 M. pneumoniae pneumonia patients, the coinfection rate was 56.07%, and 60 (60/107, 56.07%) patients were infected by drug-resistant M. pneumoniae. Adenovirus was the most prevalent coinfecting organism, accounting for 22.43% (24/107). The classification tree confirmed that viral coinfection was more common in patients younger than 3 years old. Adenovirus coinfection and drug-resistant M. pneumoniae infection occurred more commonly in patients with refractory M. pneumoniae pneumonia (P = 0.019; P = 0.001). A prediction model including wheezing, lung consolidation and extrapulmonary complications was used to predict adenovirus coinfection. The area under the receiver operating characteristic curve of the prediction model was 0.795 (95% CI 0.679–0.893, P < 0.001). A prolonged fever duration after the application of macrolides for 48 h was found more commonly in patients infected by drug-resistant M. pneumoniae (P = 0.002). A fever duration longer than 7 days was an independent risk factor for drug-resistant Mycoplasma infection (OR = 3.500, 95% CI = 1.310–9.353, P = 0.012).

Conclusions

The occurrence of refractory M. pneumoniae pneumonia is associated with adenovirus coinfection and infection by drug-resistant M. pneumoniae. A prediction model combining wheezing, extrapulmonary complications and lung consolidation can be used to predict adenovirus coinfection in children with M. pneumoniae pneumonia. A prolonged fever duration indicates drug-resistant M. pneumoniae infection, and a reasonable change in antibiotics is necessary.
Literature
1.
go back to reference Gendrel D, Raymond J, Moulin F, et al. Etiology and response to antibiotic therapy of community-acquired pneumonia in French children. Eur J Clin Microbiol Infect Dis. 1997;16(5):388–91.CrossRef Gendrel D, Raymond J, Moulin F, et al. Etiology and response to antibiotic therapy of community-acquired pneumonia in French children. Eur J Clin Microbiol Infect Dis. 1997;16(5):388–91.CrossRef
2.
go back to reference Sztrymf B, Jacobs F, Fichet J, et al. Mycoplasma-related pneumonia: a rare cause of acute respiratory distress syndrome (ARDS) and of potential antibiotic resistance[J]. Rev Mal Respir. 2013;30(1):77–80.CrossRef Sztrymf B, Jacobs F, Fichet J, et al. Mycoplasma-related pneumonia: a rare cause of acute respiratory distress syndrome (ARDS) and of potential antibiotic resistance[J]. Rev Mal Respir. 2013;30(1):77–80.CrossRef
3.
go back to reference Tamura A, Matsubara K, Tanaka T, et al. Methylprednisolone pulse therapy for refractory mycoplasma pneumoniae pneumonia in children[J]. J Inf Secur. 2008;57(3):223–8. Tamura A, Matsubara K, Tanaka T, et al. Methylprednisolone pulse therapy for refractory mycoplasma pneumoniae pneumonia in children[J]. J Inf Secur. 2008;57(3):223–8.
4.
go back to reference Koichi I. Clinical features of severe or fatal mycoplasma pneumoniae pneumonia[J]. Front Microbiol. 2016;7:800. Koichi I. Clinical features of severe or fatal mycoplasma pneumoniae pneumonia[J]. Front Microbiol. 2016;7:800.
5.
go back to reference Yu JL, Song QF, Xie ZW, Jiang WH, Chen JH, Fan HF, et al. An iTRAQ-based quantitative proteomics study of refractory mycoplasma pneumoniae pneumonia patients. Jpn J Infect Dis. 2017;70(5):571–8.CrossRef Yu JL, Song QF, Xie ZW, Jiang WH, Chen JH, Fan HF, et al. An iTRAQ-based quantitative proteomics study of refractory mycoplasma pneumoniae pneumonia patients. Jpn J Infect Dis. 2017;70(5):571–8.CrossRef
6.
go back to reference Waites KB, Balish MF, Atkinson TP. New insights into the pathogenesis and detection of mycoplasma pneumoniae infections. Future Microbiol. 2008;3(6):635–48.CrossRef Waites KB, Balish MF, Atkinson TP. New insights into the pathogenesis and detection of mycoplasma pneumoniae infections. Future Microbiol. 2008;3(6):635–48.CrossRef
7.
go back to reference XinxingZhang ZC. WenjingGu, et al. viral and bacterial co-infection in hospitalised children with refractory mycoplasma pneumoniae pneumonia[J]. Epidemiol Infect. 2018;146(11):1384–8.CrossRef XinxingZhang ZC. WenjingGu, et al. viral and bacterial co-infection in hospitalised children with refractory mycoplasma pneumoniae pneumonia[J]. Epidemiol Infect. 2018;146(11):1384–8.CrossRef
8.
go back to reference Morozumi M, Takahashi T, Ubukata K. Macrolide-resistant mycoplasma pneumoniae: characteristics of isolates and clinical aspects of community-acquired pneumonia. J Infect Chemother. 2010;16(2):78–86.CrossRef Morozumi M, Takahashi T, Ubukata K. Macrolide-resistant mycoplasma pneumoniae: characteristics of isolates and clinical aspects of community-acquired pneumonia. J Infect Chemother. 2010;16(2):78–86.CrossRef
9.
go back to reference Harris M, Clark J, Coote N, et al. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax. 2011;66(Suppl 2):ii1–23.CrossRef Harris M, Clark J, Coote N, et al. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax. 2011;66(Suppl 2):ii1–23.CrossRef
10.
go back to reference Pediatrics of Chinese medical association branch of breathing group. The Chinese journal pediatrics editorial board. The management of community acquired pneumonia in infants and children clinical practice guidelines. Chin J Pediatr. 2013;51:745–52. Pediatrics of Chinese medical association branch of breathing group. The Chinese journal pediatrics editorial board. The management of community acquired pneumonia in infants and children clinical practice guidelines. Chin J Pediatr. 2013;51:745–52.
11.
go back to reference Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection[J]. PLoS One. 2011;6(10):e26047.CrossRef Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection[J]. PLoS One. 2011;6(10):e26047.CrossRef
12.
go back to reference Li J, Tao Y, Tang M, et al. Rapid detection of respiratory organisms with the FilmArray respiratory panel in a large children's hospital in China. BMC Infect Dis. 2018;18:510.CrossRef Li J, Tao Y, Tang M, et al. Rapid detection of respiratory organisms with the FilmArray respiratory panel in a large children's hospital in China. BMC Infect Dis. 2018;18:510.CrossRef
13.
go back to reference Loeffelholz MJ, Pong DL, Pyles RB, et al. Comparison of the FilmArray respiratory panel and Prodesse real-time PCR assays for detection of respiratory pathogens[J]. J Clin Microbiol. 2011;49:4083–8.CrossRef Loeffelholz MJ, Pong DL, Pyles RB, et al. Comparison of the FilmArray respiratory panel and Prodesse real-time PCR assays for detection of respiratory pathogens[J]. J Clin Microbiol. 2011;49:4083–8.CrossRef
14.
go back to reference Michelow IC, Olsen K, Lozano J, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children[J]. Pediatrics. 2004;113(4):701–7.CrossRef Michelow IC, Olsen K, Lozano J, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children[J]. Pediatrics. 2004;113(4):701–7.CrossRef
15.
go back to reference Biljana M, Marina AM, Snezana R, et al. Mycoplasma pneumoniae as a causative agent of community-acquired pneumonia in children: clinical features and laboratory diagnosis[J]. Ital J Pediatr. 2014;40:104.CrossRef Biljana M, Marina AM, Snezana R, et al. Mycoplasma pneumoniae as a causative agent of community-acquired pneumonia in children: clinical features and laboratory diagnosis[J]. Ital J Pediatr. 2014;40:104.CrossRef
16.
go back to reference Juve’n T. Etiology of community-acquired pneumonia in 254 hospitalized children[J]. Pediatr Infect Dis J. 2000;19:293–8.CrossRef Juve’n T. Etiology of community-acquired pneumonia in 254 hospitalized children[J]. Pediatr Infect Dis J. 2000;19:293–8.CrossRef
17.
go back to reference Chiu CY, Chen CJ, Wong KS, et al. Impact of bacterial and viral coinfection on mycoplasmal pneumonia in childhood community-acquired pneumonia[J]. J Microbiol Immunol Infect. 2015;48(1):51–6.CrossRef Chiu CY, Chen CJ, Wong KS, et al. Impact of bacterial and viral coinfection on mycoplasmal pneumonia in childhood community-acquired pneumonia[J]. J Microbiol Immunol Infect. 2015;48(1):51–6.CrossRef
18.
go back to reference Zhao M-c, Wang L, Qiu F-z, et al. Impact and clinical profiles of mycoplasma pneumoniae co-detection in childhood community-acquired pneumonia[J]. BMC Infect Dis. 2019;19(1):835.CrossRef Zhao M-c, Wang L, Qiu F-z, et al. Impact and clinical profiles of mycoplasma pneumoniae co-detection in childhood community-acquired pneumonia[J]. BMC Infect Dis. 2019;19(1):835.CrossRef
19.
go back to reference Song Q, Xu BP, Shen KL. Effects of bacterial and viral co-infections of mycoplasma pneumoniae pneumonia in children: analysis report from Beijing Children’s hospital between 2010 and 2014 [J]. Int J Clin Exp Med. 2015;8(9):15666–74.PubMedPubMedCentral Song Q, Xu BP, Shen KL. Effects of bacterial and viral co-infections of mycoplasma pneumoniae pneumonia in children: analysis report from Beijing Children’s hospital between 2010 and 2014 [J]. Int J Clin Exp Med. 2015;8(9):15666–74.PubMedPubMedCentral
20.
go back to reference Zheng X, Lee S, Selvarangan R, et al. Macrolide-resistant mycoplasma pneumoniae, United States. [J]. Emerg Infect Dis. 2015;21(8):1470–2.CrossRef Zheng X, Lee S, Selvarangan R, et al. Macrolide-resistant mycoplasma pneumoniae, United States. [J]. Emerg Infect Dis. 2015;21(8):1470–2.CrossRef
21.
go back to reference Guo D, Hu W, Xu B, et al. Allele-specific real-time PCR testing for minor macrolide-resistant mycoplasma Pneumoniae[J]. BMC Infect Dis. 2019;19(1):616.CrossRef Guo D, Hu W, Xu B, et al. Allele-specific real-time PCR testing for minor macrolide-resistant mycoplasma Pneumoniae[J]. BMC Infect Dis. 2019;19(1):616.CrossRef
22.
go back to reference Qu J, Chen S, Bao F, et al. Molecular characterization and analysis of mycoplasma pneumoniae among patients of all ages with community-acquired pneumonia during an epidemic in China[J]. Int J Infect Dis. 2019;83:26–31.CrossRef Qu J, Chen S, Bao F, et al. Molecular characterization and analysis of mycoplasma pneumoniae among patients of all ages with community-acquired pneumonia during an epidemic in China[J]. Int J Infect Dis. 2019;83:26–31.CrossRef
23.
go back to reference Wu PS, Chang LY, Lin HC, et al. Epidemiology and clinical manifestations of children with macrolide-resistant mycoplasma pneumoniae pneumonia in Taiwan. [J]. Pediatr Pulmonol. 2013;48(9):904–11.CrossRef Wu PS, Chang LY, Lin HC, et al. Epidemiology and clinical manifestations of children with macrolide-resistant mycoplasma pneumoniae pneumonia in Taiwan. [J]. Pediatr Pulmonol. 2013;48(9):904–11.CrossRef
24.
go back to reference Guo DX, Hu WJ, Wei R, et al. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: A multicenter study[J]. Bosn J Basic Med Sci. 2019;19(3):288–96.PubMedPubMedCentral Guo DX, Hu WJ, Wei R, et al. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: A multicenter study[J]. Bosn J Basic Med Sci. 2019;19(3):288–96.PubMedPubMedCentral
25.
go back to reference Waites KB, Ratliff A, Crabb DM, et al. Macrolide-resistant mycoplasma pneumoniae in the United States as determined from a National Surveillance Program[J]. J Clin Microbiol. 2019;23:57(11). Waites KB, Ratliff A, Crabb DM, et al. Macrolide-resistant mycoplasma pneumoniae in the United States as determined from a National Surveillance Program[J]. J Clin Microbiol. 2019;23:57(11).
26.
go back to reference Ferguson GD, Gadsby NJ, Henderson SS, et al. Clinical outcomes and macrolide resistance in mycoplasma pneumoniae infection in Scotland, UK[J]. J Med Microbiol. 2013;62(Pt 12):1876–82.CrossRef Ferguson GD, Gadsby NJ, Henderson SS, et al. Clinical outcomes and macrolide resistance in mycoplasma pneumoniae infection in Scotland, UK[J]. J Med Microbiol. 2013;62(Pt 12):1876–82.CrossRef
27.
go back to reference Tanaka T, Oishi T, Miyata I, et al. Macrolide-resistant mycoplasma pneumoniae infection, Japan, 2008–2015. Emerg Infect Dis. 2017;23(10):1703–6.CrossRef Tanaka T, Oishi T, Miyata I, et al. Macrolide-resistant mycoplasma pneumoniae infection, Japan, 2008–2015. Emerg Infect Dis. 2017;23(10):1703–6.CrossRef
28.
go back to reference Uehara S, Sunakawa K, Eguchi H, et al. Japanese guidelines for the management of respiratory infectious diseases in children 2007 with focus on pneumonia. Pediatr Int. 2011;53(2):264–76.CrossRef Uehara S, Sunakawa K, Eguchi H, et al. Japanese guidelines for the management of respiratory infectious diseases in children 2007 with focus on pneumonia. Pediatr Int. 2011;53(2):264–76.CrossRef
29.
go back to reference Kawai Y, Miyashita N, Kubo M, et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob Agents Chemother. 2013;57(5):2252–8.CrossRef Kawai Y, Miyashita N, Kubo M, et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob Agents Chemother. 2013;57(5):2252–8.CrossRef
30.
go back to reference Kawai Y, Miyashita N, Yamaguchi T, et al. Clinical efficacy of macrolide antibiotics against genetically determined macrolide-resistant mycoplasma pneumoniae pneumonia in paediatric patients. Respirology. 2012;17(2):354–62.CrossRef Kawai Y, Miyashita N, Yamaguchi T, et al. Clinical efficacy of macrolide antibiotics against genetically determined macrolide-resistant mycoplasma pneumoniae pneumonia in paediatric patients. Respirology. 2012;17(2):354–62.CrossRef
31.
go back to reference Ishiguro N, Koseki N, Kaiho M, et al. Therapeutic efficacy of azithromycin, clarithromycin, minocycline and tosufloxacin against macrolide-resistant and macrolide-sensitive mycoplasma pneumoniae pneumonia in pediatric patients. PLoS One. 2017;12(3):e0173635.CrossRef Ishiguro N, Koseki N, Kaiho M, et al. Therapeutic efficacy of azithromycin, clarithromycin, minocycline and tosufloxacin against macrolide-resistant and macrolide-sensitive mycoplasma pneumoniae pneumonia in pediatric patients. PLoS One. 2017;12(3):e0173635.CrossRef
32.
go back to reference Carris NW, Pardo J, Montero J, et al. Minocycline as A substitute for doxycycline in targeted scenarios: a systematic review. Open Forum Infect Dis. 2015;2(4):ofv178.CrossRef Carris NW, Pardo J, Montero J, et al. Minocycline as A substitute for doxycycline in targeted scenarios: a systematic review. Open Forum Infect Dis. 2015;2(4):ofv178.CrossRef
33.
go back to reference Abramson JS, Givner LB. Should tetracycline be contraindicated for therapy of presumed Rocky Mountain spotted fever in children less than 9 years of age? Pediatrics. 1990;86(1):123–4.PubMed Abramson JS, Givner LB. Should tetracycline be contraindicated for therapy of presumed Rocky Mountain spotted fever in children less than 9 years of age? Pediatrics. 1990;86(1):123–4.PubMed
34.
go back to reference Takafumi O, Miyuki M, Takeshi T, et al. Rapid effectiveness of minocycline or doxycycline against macrolide-resistant mycoplasma pneumoniae infection in a 2011 outbreak among Japanese children[J]. C Clin Infect Dis. 2012;55(12):1642–9.CrossRef Takafumi O, Miyuki M, Takeshi T, et al. Rapid effectiveness of minocycline or doxycycline against macrolide-resistant mycoplasma pneumoniae infection in a 2011 outbreak among Japanese children[J]. C Clin Infect Dis. 2012;55(12):1642–9.CrossRef
35.
go back to reference Lin M, Shi L, Huang A, et al. Efficacy of levofloxacin on macrolide-unresponsive and corticosteroid-resistant refractory mycoplasma pneumoniae pneumonia in children[J]. Ann Palliat Med. 2019;8(5):632–9.CrossRef Lin M, Shi L, Huang A, et al. Efficacy of levofloxacin on macrolide-unresponsive and corticosteroid-resistant refractory mycoplasma pneumoniae pneumonia in children[J]. Ann Palliat Med. 2019;8(5):632–9.CrossRef
36.
go back to reference Okada T, Morozumi M, Tajima T, et al. Rapid effectiveness of minocycline or doxycycline against macrolide-resistant mycoplasma pneumoniae infection in a 2011 outbreak among Japanese children. Clin Infect Dis. 2012;55(12):1642–9.CrossRef Okada T, Morozumi M, Tajima T, et al. Rapid effectiveness of minocycline or doxycycline against macrolide-resistant mycoplasma pneumoniae infection in a 2011 outbreak among Japanese children. Clin Infect Dis. 2012;55(12):1642–9.CrossRef
Metadata
Title
Impact of viral coinfection and macrolide-resistant mycoplasma infection in children with refractory Mycoplasma pneumoniae pneumonia
Authors
Yajuan Zhou
Jing Wang
Wenjuan Chen
Nan Shen
Yue Tao
Ruike Zhao
Lijuan Luo
Biru Li
Qing Cao
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05356-1

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.