Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Isoniazid | Research article

Prevalence of tuberculosis, multidrug resistant tuberculosis and associated risk factors among smear negative presumptive pulmonary tuberculosis patients in Addis Ababa, Ethiopia

Authors: Waganeh Sinshaw, Abebaw Kebede, Adane Bitew, Ephrem Tesfaye, Mengistu Tadesse, Zemedu Mehamed, Bazezew Yenew, Misikir Amare, Biniyam Dagne, Getu Diriba, Ayinalem Alemu, Muluwork Getahun, Dinka Fikadu, Kassu Desta, Habteyes Hailu Tola

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

The diagnoses of active smear negative PTB, remains difficult. As a result, treatment is often carried out empirically relaying on clinical criteria. The distribution and magnitude of smear negative PTB, smear negative MDR-TB and associated factors in the same day diagnosis strategy are not clearly known in the study area. Therefore, this study aimed to determine the prevalence of TB, MDR-TB and associated risk factors among presumptive smear negative pulmonary tuberculosis patients in Addis Ababa, Ethiopia.

Methods

Analytic cross sectional study design was used. A total of 418 smear negative presumptive pulmonary TB patients were enrolled from selected health facilities since August 01, 2017 to January 5, 2018. Sputum samples were examined by Ziehl Neelsen microscopy, Xpert MTB/RIF assay and Culture. Drug susceptibility testing was performed by line probe assay and BACTEC MGIT 960 system. These laboratory tests were performed in Ethiopian Public Health Institute, National TB Reference Laboratory. Data was analyzed by SPSS Ver.20.

Results

From the total of 418 enrolled patients, 27 (6.5%) were Xpert MTB/ RIF and 26 (6.4%) were culture confirmed smear negative PTB patients. The positivity rate among male and female was 10.2 and 3.5% (p = 0.005) respectively. From 26 culture positive isolates 3 (11.54%) were MDR TB; from MDR-TB confirmed isolates 2/23 (8.7%) were among new and 1/3 (33.3%) was among retreatment smear negative presumptive pulmonary TB patients. All Rifampicin resistant smear negative pulmonary TB isolates by Xpert MTB/ RIF assay were found to be MDR TB and 7/26 (26.9%) isolates were INH mono resistant. History of migration found to be a potential factor for developing smear negative pulmonary TB.

Conclusion

In this study a significant proportion of smear negative pulmonary TB was diagnosed. Furthermore, a high smear negative multi drug resistant (MDR) TB and other mono drug resistant TB prevalence was confirmed. Due to the limitations of smear microscopy which is used as a primary diagnostic tool, these TB strains are missed to be diagnosed and transmission continues in the community.
Literature
1.
go back to reference WHO. Global tuberculosis report. Geneva: World Health Organization; 2018. WHO. Global tuberculosis report. Geneva: World Health Organization; 2018.
2.
go back to reference Dye C, Lönnroth K, Jaramillo E, Williams BG, Raviglione. Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ. 2009;87:683–91.CrossRef Dye C, Lönnroth K, Jaramillo E, Williams BG, Raviglione. Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ. 2009;87:683–91.CrossRef
3.
go back to reference WHO. Multidrug-Resistant Tuberculosis (MDR-TB) report, 2013. WHO. Multidrug-Resistant Tuberculosis (MDR-TB) report, 2013.
4.
5.
go back to reference WHO/HTM/TB. Anti-Tuberculosis Drug Resistance in the world global report number 4. WHO. 2008;(4):394. WHO/HTM/TB. Anti-Tuberculosis Drug Resistance in the world global report number 4. WHO. 2008;(4):394.
6.
go back to reference Lemma E, Feleke B, Kebede A, Getahun M, Yaregal Z, Fantu R. Second Round National Anti-tuberculosis Drug Resistance Surveillance in Ethiopia Report; 2014. p. 1–52. Lemma E, Feleke B, Kebede A, Getahun M, Yaregal Z, Fantu R. Second Round National Anti-tuberculosis Drug Resistance Surveillance in Ethiopia Report; 2014. p. 1–52.
11.
go back to reference WHO. Improving the diagnosis and treatment of smear-negative pulmonary and extra pulmonary tuberculosis among adults and adolescents. Recommendations for HIV prevalent and resource-constrained settings. 2007. Available at: http://www.who.int. WHO. Improving the diagnosis and treatment of smear-negative pulmonary and extra pulmonary tuberculosis among adults and adolescents. Recommendations for HIV prevalent and resource-constrained settings. 2007. Available at: http://​www.​who.​int.
12.
go back to reference Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. Lancet. 2007;369:2042–9.CrossRef Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. Lancet. 2007;369:2042–9.CrossRef
13.
go back to reference Cavanaugh JS, Shah NS, Cain KP, Winston CA. Survival among patients with HIV infection and smear-negative pulmonary tuberculosis - United States, 1993-2006. PLoS One. 2012;7(10):e47855.CrossRef Cavanaugh JS, Shah NS, Cain KP, Winston CA. Survival among patients with HIV infection and smear-negative pulmonary tuberculosis - United States, 1993-2006. PLoS One. 2012;7(10):e47855.CrossRef
14.
go back to reference European Centre for Disease Prevention and Control/WHO Regional Office for Europe. Tuberculosis surveillance and monitoring in Europe 2015. European Centre for Disease Prevention and Control/WHO Regional Office for Europe. Tuberculosis surveillance and monitoring in Europe 2015.
15.
go back to reference Rusovich V, Kumar AMV, Skrahina A, Hurevich H, Astrauko A, de Colombani P, et al. High time to use rapid tests to detect multidrug resistance in sputum smear-negative tuberculosis in Belarus. Public Heal action. 2014;4(4):243–8.CrossRef Rusovich V, Kumar AMV, Skrahina A, Hurevich H, Astrauko A, de Colombani P, et al. High time to use rapid tests to detect multidrug resistance in sputum smear-negative tuberculosis in Belarus. Public Heal action. 2014;4(4):243–8.CrossRef
17.
go back to reference Keflie TSS, Ameni G. Microscopic examination and smear negative pulmonary tuberculosis in ethiopia. Pan Afr Med J. 2014;19(162):1–10. Keflie TSS, Ameni G. Microscopic examination and smear negative pulmonary tuberculosis in ethiopia. Pan Afr Med J. 2014;19(162):1–10.
18.
go back to reference Desta K, Asrat D, Lemma E, Gebeyehu M, Feleke B. Drug susceptibility of Mycobacterium tuberculosis isolates from smear negative pulmonary tuberculosis patients, Addis Ababa: Ethiop. JHealth Dev. 2008;22(2):212–5. Desta K, Asrat D, Lemma E, Gebeyehu M, Feleke B. Drug susceptibility of Mycobacterium tuberculosis isolates from smear negative pulmonary tuberculosis patients, Addis Ababa: Ethiop. JHealth Dev. 2008;22(2):212–5.
19.
go back to reference Calis JCJ, Bakker ML, Elens RB, Borgdorff M, Harries AD. Mortality in smear-negative tuberculosis patients in Phalombe. Malawi Med J. 2002;14(2):13–4. Calis JCJ, Bakker ML, Elens RB, Borgdorff M, Harries AD. Mortality in smear-negative tuberculosis patients in Phalombe. Malawi Med J. 2002;14(2):13–4.
21.
go back to reference Tostmann A, Kik SV, Kalisvaart NA, Sebek MM, Verver S, Boeree MJ, et al. Tuberculosis transmission by patients with smear-negative pulmonary tuberculosis in a large cohort in the Netherlands. Clin Infect Dis. 2008;47(9):1135–42.CrossRef Tostmann A, Kik SV, Kalisvaart NA, Sebek MM, Verver S, Boeree MJ, et al. Tuberculosis transmission by patients with smear-negative pulmonary tuberculosis in a large cohort in the Netherlands. Clin Infect Dis. 2008;47(9):1135–42.CrossRef
22.
go back to reference Behr MA, Warren SA, Salamon H, Hopewell PC, Ponce de LA, Daley CL, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet. 1999;353:444–9.CrossRef Behr MA, Warren SA, Salamon H, Hopewell PC, Ponce de LA, Daley CL, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet. 1999;353:444–9.CrossRef
23.
go back to reference Hernandez-Garduno E, Cook V, Kunimoto D, Elwood RK, Black WA, FitzGerald JM. Transmission of tuberculosis from smear negative patients: a molecular epidemiology study. Thorax. 2004;59:286–90.CrossRef Hernandez-Garduno E, Cook V, Kunimoto D, Elwood RK, Black WA, FitzGerald JM. Transmission of tuberculosis from smear negative patients: a molecular epidemiology study. Thorax. 2004;59:286–90.CrossRef
24.
go back to reference Samb B, Sow PS, Kony S, Maynart-Badiane M, Diouf G, Cissokho S, et al. Risk factors for negative sputum acid-fast bacilli smears in pulmonary tuberculosis: results from Dakar, Senegal, a city with low HIV seroprevalence. Int J Tuberc Lung Dis. 1999;3(4):330–6.PubMed Samb B, Sow PS, Kony S, Maynart-Badiane M, Diouf G, Cissokho S, et al. Risk factors for negative sputum acid-fast bacilli smears in pulmonary tuberculosis: results from Dakar, Senegal, a city with low HIV seroprevalence. Int J Tuberc Lung Dis. 1999;3(4):330–6.PubMed
25.
go back to reference Nyagosya R, Andersen AB, van LF, Magnussen P, Apolinary M, Friis H. Risk factors for smear negative and culture positive results among pulmonary tuberculosis patients in Mwanza, Tanzania. Open Trop Med J. 2008;1(1):68–73.CrossRef Nyagosya R, Andersen AB, van LF, Magnussen P, Apolinary M, Friis H. Risk factors for smear negative and culture positive results among pulmonary tuberculosis patients in Mwanza, Tanzania. Open Trop Med J. 2008;1(1):68–73.CrossRef
28.
go back to reference Cepheid. GeneXpert Dx System Users’ manual; 2012. p. 2–13. Cepheid. GeneXpert Dx System Users’ manual; 2012. p. 2–13.
29.
go back to reference Kanade S, Nataraj G, Suryawanshi R, Mehta P. Utility of MPT 64 antigen detection assay for rapid characterization of mycobacteria in a resource constrained setting. Indian JTuberc. 2012;59(2):92–6. Kanade S, Nataraj G, Suryawanshi R, Mehta P. Utility of MPT 64 antigen detection assay for rapid characterization of mycobacteria in a resource constrained setting. Indian JTuberc. 2012;59(2):92–6.
30.
go back to reference Stinson KW, Eisenach K, Kayes S, Matsumoto M, Siddiqi S, Nakashima, S. Global Laboratory Initiative Advancing TB Diagnosis: Mycobacteriology Laboratory Manual. (K. W. Stinson, Ed.). 2014. p. 147. Stinson KW, Eisenach K, Kayes S, Matsumoto M, Siddiqi S, Nakashima, S. Global Laboratory Initiative Advancing TB Diagnosis: Mycobacteriology Laboratory Manual. (K. W. Stinson, Ed.). 2014. p. 147.
31.
go back to reference Hargreaves NJ, Kadzakumanja O, Phiri S, Nyangulu DS, Salaniponi FM, Harries AD. What causes smear-negative pulmonary tuberculosis in Malawi, an area of high HIV seroprevalence? Int J Tuberc Lung Dis. 2001;5:113–22.PubMed Hargreaves NJ, Kadzakumanja O, Phiri S, Nyangulu DS, Salaniponi FM, Harries AD. What causes smear-negative pulmonary tuberculosis in Malawi, an area of high HIV seroprevalence? Int J Tuberc Lung Dis. 2001;5:113–22.PubMed
32.
go back to reference Nguyen D, Nguyen H, Beasley R. Performance of clinical algorithms for smear-negative tuberculosis in HIV-infected persons in Ho Chi Minh City, Vietnam. Tuberc Res Treat. 2012;6:e360852. Nguyen D, Nguyen H, Beasley R. Performance of clinical algorithms for smear-negative tuberculosis in HIV-infected persons in Ho Chi Minh City, Vietnam. Tuberc Res Treat. 2012;6:e360852.
33.
go back to reference Biadglegne F, Rodloff AC, Sack U. A first insight into high prevalence of undiagnosed smear-negative pulmonary tuberculosis in northern Ethiopian Prisons implications for greater investment and quality control. PLoS One. 2014;9(9):e106869.CrossRef Biadglegne F, Rodloff AC, Sack U. A first insight into high prevalence of undiagnosed smear-negative pulmonary tuberculosis in northern Ethiopian Prisons implications for greater investment and quality control. PLoS One. 2014;9(9):e106869.CrossRef
35.
go back to reference Sahebi L, Ansarin K, Mohajeri P, Khalili M, Monfaredan A, Farajnia S, et al. Patterns of Drug Resistance Among Tuberculosis Patients in West and Northwestern Iran. Open Respir Med J. 2016;10(1):29–35.CrossRef Sahebi L, Ansarin K, Mohajeri P, Khalili M, Monfaredan A, Farajnia S, et al. Patterns of Drug Resistance Among Tuberculosis Patients in West and Northwestern Iran. Open Respir Med J. 2016;10(1):29–35.CrossRef
36.
go back to reference Sharma SK, Kaushik G, Jha B, George N, Arora SK, Gupta D. Prevalence of multidrug-resistant tuberculosis among newly diagnosed cases of sputum-positive pulmonary tuberculosis. Indian J Med Res. 2011;133:308–11.PubMedPubMedCentral Sharma SK, Kaushik G, Jha B, George N, Arora SK, Gupta D. Prevalence of multidrug-resistant tuberculosis among newly diagnosed cases of sputum-positive pulmonary tuberculosis. Indian J Med Res. 2011;133:308–11.PubMedPubMedCentral
39.
go back to reference Samb B, Sow PS, Kony S, Maynart-Badiane M, Diouf G, et al. Risk factors for negative sputum acid-fast bacilli smears in pulmonary tuberculosis: results from Dakar, Senegal, a city with low HIV seroprevalence. Int J Tubrc Lung Dis. 1999;3(4):330–6. Samb B, Sow PS, Kony S, Maynart-Badiane M, Diouf G, et al. Risk factors for negative sputum acid-fast bacilli smears in pulmonary tuberculosis: results from Dakar, Senegal, a city with low HIV seroprevalence. Int J Tubrc Lung Dis. 1999;3(4):330–6.
40.
go back to reference Damtew E, Ali I, Meressa D. Prevalence of Diabetes Mellitus among Active Pulmonary Tuberculosis Patients at St. Peter Specialized Hospital, Addis Ababa, Ethiopia. world J Med Sci. 2014;11(3):389–96. Damtew E, Ali I, Meressa D. Prevalence of Diabetes Mellitus among Active Pulmonary Tuberculosis Patients at St. Peter Specialized Hospital, Addis Ababa, Ethiopia. world J Med Sci. 2014;11(3):389–96.
41.
go back to reference Ali S, Haileamlak A, Wieser A, Pritsch M, Heinrich N, Loscher T, et al. Prevalence of Pulmonary Tuberculosis among Prison Inmates in Ethiopia, a Cross-Sectional Study. PLoS One. 2015;10(12):1–11.CrossRef Ali S, Haileamlak A, Wieser A, Pritsch M, Heinrich N, Loscher T, et al. Prevalence of Pulmonary Tuberculosis among Prison Inmates in Ethiopia, a Cross-Sectional Study. PLoS One. 2015;10(12):1–11.CrossRef
Metadata
Title
Prevalence of tuberculosis, multidrug resistant tuberculosis and associated risk factors among smear negative presumptive pulmonary tuberculosis patients in Addis Ababa, Ethiopia
Authors
Waganeh Sinshaw
Abebaw Kebede
Adane Bitew
Ephrem Tesfaye
Mengistu Tadesse
Zemedu Mehamed
Bazezew Yenew
Misikir Amare
Biniyam Dagne
Getu Diriba
Ayinalem Alemu
Muluwork Getahun
Dinka Fikadu
Kassu Desta
Habteyes Hailu Tola
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4241-7

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue