Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Tuberculosis | Research article

The role of super-spreading events in Mycobacterium tuberculosis transmission: evidence from contact tracing

Authors: Yayehirad A. Melsew, Manoj Gambhir, Allen C. Cheng, Emma S. McBryde, Justin T. Denholm, Ee Laine Tay, James M. Trauer

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

In current epidemiology of tuberculosis (TB), heterogeneity in infectiousness among TB patients is a challenge, which is not well studied. We aimed to quantify this heterogeneity and the presence of “super-spreading” events that can assist in designing optimal public health interventions.

Methods

TB epidemiologic investigation data notified between 1 January 2005 and 31 December 2015 from Victoria, Australia were used to quantify TB patients’ heterogeneity in infectiousness and super-spreading events. We fitted a negative binomial offspring distribution (NBD) for the number of secondary infections and secondary active TB disease each TB patient produced. The dispersion parameter, k, of the NBD measures the level of heterogeneity, where low values of k (e.g. k < 1) indicate over-dispersion. Super-spreading was defined as patients causing as many or more secondary infections as the 99th centile of an equivalent homogeneous distribution. Contact infection was determined based on a tuberculin skin test (TST) result of ≥10 mm. A NBD model was fitted to identify index characteristics that were associated with the number of contacts infected and risk ratios (RRs) were used to quantify the strength of this association.

Results

There were 4190 (2312 pulmonary and 1878 extrapulmonary) index TB patients and 18,030 contacts. A total of 15,522 contacts were tested with TST, of whom 3213 had a result of ≥10 mm. The dispersion parameter, k for secondary infections was estimated at 0.16 (95%CI 0.14–0.17) and there were 414 (9.9%) super-spreading events. From the 3213 secondary infections, 2415 (75.2%) were due to super-spreading events. There were 226 contacts who developed active TB disease and a higher level of heterogeneity was found for this outcome than for secondary infection, with k estimated at 0.036 (95%CI 0.025–0.046). In regression analyses, we found that infectiousness was greater among index patients found by clinical presentation and those with bacteriological confirmation.

Conclusion

TB transmission is highly over dispersed and super-spreading events are responsible for a substantial majority of secondary infections. Heterogeneity of transmission and super-spreading are critical issues to consider in the design of interventions and models of TB transmission dynamics.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Global tuberculosis report 2016. Switzerland: World Health Organization; 2016. WHO. Global tuberculosis report 2016. Switzerland: World Health Organization; 2016.
2.
go back to reference WHO. The End TB Strategy: Global strategy and targets for tuberculosis prevention, care and control after 2015. Geneva: World Health Organization; 2014. WHO. The End TB Strategy: Global strategy and targets for tuberculosis prevention, care and control after 2015. Geneva: World Health Organization; 2014.
3.
go back to reference Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, Ginsberg A, Swaminathan S, Spigelman M, Getahun H, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2:16076.CrossRef Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, Ginsberg A, Swaminathan S, Spigelman M, Getahun H, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2:16076.CrossRef
4.
go back to reference Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355–9.CrossRef Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355–9.CrossRef
5.
go back to reference Shen Z, Ning F, Zhou W, He X, Lin C, Chin DP, Zhu Z, Schuchat A. Superspreading SARS events, Beijing, 2003. Emerg Infect Dis. 2004;10(2):256–60.CrossRef Shen Z, Ning F, Zhou W, He X, Lin C, Chin DP, Zhu Z, Schuchat A. Superspreading SARS events, Beijing, 2003. Emerg Infect Dis. 2004;10(2):256–60.CrossRef
6.
go back to reference Small M, Tse C, Walker DM. Super-spreaders and the rate of transmission of the SARS virus. Physica D: Nonlinear Phenomena. 2006;215(2):146–58.CrossRef Small M, Tse C, Walker DM. Super-spreaders and the rate of transmission of the SARS virus. Physica D: Nonlinear Phenomena. 2006;215(2):146–58.CrossRef
7.
go back to reference Stein RA. Super-spreaders in infectious diseases. Int J Infect Dis. 2011;15(8):e510–3.CrossRef Stein RA. Super-spreaders in infectious diseases. Int J Infect Dis. 2011;15(8):e510–3.CrossRef
8.
go back to reference Curtis AB, Ridzon R, Vogel R, McDonough S, Hargreaves J, Ferry J, Valway S, Onorato IM. Extensive transmission of mycobacterium tuberculosis from a child. N Engl J Med. 1999;341(20):1491–5.CrossRef Curtis AB, Ridzon R, Vogel R, McDonough S, Hargreaves J, Ferry J, Valway S, Onorato IM. Extensive transmission of mycobacterium tuberculosis from a child. N Engl J Med. 1999;341(20):1491–5.CrossRef
9.
go back to reference Galvani AP, May RM. Epidemiology: dimensions of superspreading. Nature. 2005;438(7066):293–5.CrossRef Galvani AP, May RM. Epidemiology: dimensions of superspreading. Nature. 2005;438(7066):293–5.CrossRef
10.
go back to reference Ypma RJ, Altes HK, van Soolingen D, Wallinga J, van Ballegooijen WM. A sign of superspreading in tuberculosis: highly skewed distribution of genotypic cluster sizes. Epidemiology. 2013;24(3):395–400.CrossRef Ypma RJ, Altes HK, van Soolingen D, Wallinga J, van Ballegooijen WM. A sign of superspreading in tuberculosis: highly skewed distribution of genotypic cluster sizes. Epidemiology. 2013;24(3):395–400.CrossRef
11.
go back to reference Melsew YA, Doan TN, Gambhir M, Cheng AC, McBryde E, Trauer JM. Risk factors for infectiousness of patients with tuberculosis: a systematic review and meta-analysis. Epidemiology & Infection. 2018;146(3):345-53. Melsew YA, Doan TN, Gambhir M, Cheng AC, McBryde E, Trauer JM. Risk factors for infectiousness of patients with tuberculosis: a systematic review and meta-analysis. Epidemiology & Infection. 2018;146(3):345-53.
12.
go back to reference Department of Health & Human Services. Management, control and prevention of tuberculosis: Guidelines for health care providers; Victorian Government; 2015. Department of Health & Human Services. Management, control and prevention of tuberculosis: Guidelines for health care providers; Victorian Government; 2015.
14.
go back to reference Moyo N, Tay E, Denholm J. Evaluation of tuberculin skin testing in tuberculosis contacts in Victoria, Australia, 2005–2013. Public Health Action. 2015;5(3):188–93.CrossRef Moyo N, Tay E, Denholm J. Evaluation of tuberculin skin testing in tuberculosis contacts in Victoria, Australia, 2005–2013. Public Health Action. 2015;5(3):188–93.CrossRef
15.
go back to reference Dale K, Tay E, Trevan P, Denholm J. Mortality among tuberculosis cases in Victoria, 2002–2013: case fatality and factors associated with death. Int J Tuberc Lung Dis. 2016;20(4):515–23.CrossRef Dale K, Tay E, Trevan P, Denholm J. Mortality among tuberculosis cases in Victoria, 2002–2013: case fatality and factors associated with death. Int J Tuberc Lung Dis. 2016;20(4):515–23.CrossRef
16.
go back to reference Lloyd-Smith JO. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS One. 2007;2(2):e180.CrossRef Lloyd-Smith JO. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS One. 2007;2(2):e180.CrossRef
17.
go back to reference Fisher RA. The negative binomial distribution. Ann Eugenics. 1941;11(1):182–7.CrossRef Fisher RA. The negative binomial distribution. Ann Eugenics. 1941;11(1):182–7.CrossRef
18.
go back to reference Bliss CI, Fisher RA. Fitting the negative binomial distribution to biological data. Biometrics. 1953;9(2):176–200.CrossRef Bliss CI, Fisher RA. Fitting the negative binomial distribution to biological data. Biometrics. 1953;9(2):176–200.CrossRef
19.
go back to reference Venables WN, Ripley BD. Modern Applied Statistics with S, Fourth edn. New York: Springer; 2002.CrossRef Venables WN, Ripley BD. Modern Applied Statistics with S, Fourth edn. New York: Springer; 2002.CrossRef
20.
go back to reference RCoreTeam. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2014. RCoreTeam. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2014.
21.
go back to reference Lloyd-Smith JO, Schreiber SJ, Getz WM. Moving beyond averages: Individual-level variation in. In: Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges: AMS-IMS-SIAM Joint Summer Research Conference on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges, July 17-21, 2005, Snowbird, Utah: 2006: American Mathematical Soc; 2006. p. 235. Lloyd-Smith JO, Schreiber SJ, Getz WM. Moving beyond averages: Individual-level variation in. In: Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges: AMS-IMS-SIAM Joint Summer Research Conference on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges, July 17-21, 2005, Snowbird, Utah: 2006: American Mathematical Soc; 2006. p. 235.
22.
go back to reference Kleiber C, Zeileis A. Visualizing count data regressions using rootograms. Am Stat. 2016;70(3):296–303.CrossRef Kleiber C, Zeileis A. Visualizing count data regressions using rootograms. Am Stat. 2016;70(3):296–303.CrossRef
23.
go back to reference Flynn M, Brown L, Tesfai A, Lauer T. Post-migration screening for active tuberculosis in Victoria, Australia. Int J Tuberc Lung Dis. 2012;16(1):50–4.CrossRef Flynn M, Brown L, Tesfai A, Lauer T. Post-migration screening for active tuberculosis in Victoria, Australia. Int J Tuberc Lung Dis. 2012;16(1):50–4.CrossRef
24.
go back to reference Trauer JM, Moyo N, Tay E-L, Dale K, Ragonnet R, McBryde ES, Denholm JT. Risk of active tuberculosis in the five years following infection... 15%? Chest J. 2016;149(2):516–25.CrossRef Trauer JM, Moyo N, Tay E-L, Dale K, Ragonnet R, McBryde ES, Denholm JT. Risk of active tuberculosis in the five years following infection... 15%? Chest J. 2016;149(2):516–25.CrossRef
25.
go back to reference Woolhouse ME, Dye C, Etard J-F, Smith T, Charlwood J, Garnett G, Hagan P, Hii J, Ndhlovu P, Quinnell R. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci. 1997;94(1):338–42.CrossRef Woolhouse ME, Dye C, Etard J-F, Smith T, Charlwood J, Garnett G, Hagan P, Hii J, Ndhlovu P, Quinnell R. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci. 1997;94(1):338–42.CrossRef
26.
go back to reference Carvalho AC, Deriemer K, Nunes ZB, Martins M, Comelli M, Marinoni A, KRITSKI AL. Transmission of mycobacterium tuberculosis to contacts of HIV-infected tuberculosis patients. Am J Respir Crit Care Med. 2001;164(12):2166–71.CrossRef Carvalho AC, Deriemer K, Nunes ZB, Martins M, Comelli M, Marinoni A, KRITSKI AL. Transmission of mycobacterium tuberculosis to contacts of HIV-infected tuberculosis patients. Am J Respir Crit Care Med. 2001;164(12):2166–71.CrossRef
27.
go back to reference Faksri K, Reechaipichitkul W, Pimrin W, Bourpoern J, Prompinij S. Transmission and risk factors for latent tuberculosis infections among index case-matched household contacts. Southeast Asian J Trop Med Public Health. 2015;46(3):486.PubMed Faksri K, Reechaipichitkul W, Pimrin W, Bourpoern J, Prompinij S. Transmission and risk factors for latent tuberculosis infections among index case-matched household contacts. Southeast Asian J Trop Med Public Health. 2015;46(3):486.PubMed
28.
go back to reference Godoy P, Cayla JA, Carmona G, Camps N, Alvarez J, Rodes A, Altet N, Pina JM, Barrabeig I, Orcau A, et al. Immigrants do not transmit tuberculosis more than indigenous patients in Catalonia (Spain). Tuberculosis. 2013;93(4):456–60.CrossRef Godoy P, Cayla JA, Carmona G, Camps N, Alvarez J, Rodes A, Altet N, Pina JM, Barrabeig I, Orcau A, et al. Immigrants do not transmit tuberculosis more than indigenous patients in Catalonia (Spain). Tuberculosis. 2013;93(4):456–60.CrossRef
29.
go back to reference Lohmann EM, Koster BFPJ, Le Cessie S, Kamst-van Agterveld MP, Van Soolingen D, Arend SM. Grading of a positive sputum smear and the risk of mycobacterium tuberculosis transmission. Int J Tuberc Lung Dis. 2012;16(11):1477–84.CrossRef Lohmann EM, Koster BFPJ, Le Cessie S, Kamst-van Agterveld MP, Van Soolingen D, Arend SM. Grading of a positive sputum smear and the risk of mycobacterium tuberculosis transmission. Int J Tuberc Lung Dis. 2012;16(11):1477–84.CrossRef
30.
go back to reference Tornee S, Kaewkungwal J, Fungladda W, Silachamroon U, Akarasewi P, Sunakorn P. Risk factors for tuberculosis infection among household contacts in Bangkok, Thailand. Southeast Asian J Trop Med Public Health. 2004;35(2):375–83.PubMed Tornee S, Kaewkungwal J, Fungladda W, Silachamroon U, Akarasewi P, Sunakorn P. Risk factors for tuberculosis infection among household contacts in Bangkok, Thailand. Southeast Asian J Trop Med Public Health. 2004;35(2):375–83.PubMed
31.
go back to reference Golub J, Bur S, Cronin W, Gange S, Baruch N, Comstock G, Chaisson R. Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis. 2006;10(1):24–30.PubMed Golub J, Bur S, Cronin W, Gange S, Baruch N, Comstock G, Chaisson R. Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis. 2006;10(1):24–30.PubMed
32.
go back to reference Lin X, Chongsuvivatwong V, Lin L, Geater A, Lijuan R. Dose–response relationship between treatment delay of smear-positive tuberculosis patients and intra-household transmission: a cross-sectional study. Trans R Soc Trop Med Hyg. 2008;102(8):797–804.CrossRef Lin X, Chongsuvivatwong V, Lin L, Geater A, Lijuan R. Dose–response relationship between treatment delay of smear-positive tuberculosis patients and intra-household transmission: a cross-sectional study. Trans R Soc Trop Med Hyg. 2008;102(8):797–804.CrossRef
33.
go back to reference Mendes MA, Gaio R, Reis R, Duarte R. Contact screening in tuberculosis: can we identify those with higher risk? Eur Respir J. 2013;41(3):758–60.CrossRef Mendes MA, Gaio R, Reis R, Duarte R. Contact screening in tuberculosis: can we identify those with higher risk? Eur Respir J. 2013;41(3):758–60.CrossRef
34.
go back to reference O'Shea MK, Koh GC, Munang M, Smith G, Banerjee A, Dedicoat M. Time-to-detection in culture predicts risk of mycobacterium tuberculosis transmission: a cohort study. Clin Infect Dis. 2014;59(2):177–85.CrossRef O'Shea MK, Koh GC, Munang M, Smith G, Banerjee A, Dedicoat M. Time-to-detection in culture predicts risk of mycobacterium tuberculosis transmission: a cohort study. Clin Infect Dis. 2014;59(2):177–85.CrossRef
Metadata
Title
The role of super-spreading events in Mycobacterium tuberculosis transmission: evidence from contact tracing
Authors
Yayehirad A. Melsew
Manoj Gambhir
Allen C. Cheng
Emma S. McBryde
Justin T. Denholm
Ee Laine Tay
James M. Trauer
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-3870-1

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue